Image from Coce

Mechanisms and robots analysis with MATLAB / by Dan B. Marghitu.

By: Material type: TextTextPublisher: New York ; London : Springer, [2009]Copyright date: ©2009Description: xi, 479 pages : illustrations ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 1848003900
  • 9781848003903
  • 1848003919
  • 9781848003910
Subject(s): DDC classification:
  • 629.892 22
LOC classification:
  • TJ181 .M369 2009
Contents:
1. Introduction -- 1.1. Degrees of Freedom and Motion -- 1.2. Kinematic Pairs -- 1.3. Dyads -- 1.4. Independent Contours -- 1.5. Planar Mechanism Decomposition -- 2. Position Analysis -- 2.1. Absolute Cartesian Method -- 2.2. Slider-Crank (R-RRT) Mechanism -- 2.3. Four-Bar (R-RRR) Mechanism -- 2.4. R-RTR-RTR Mechanism -- 2.5. R-RTR-RTR Mechanism: Complete Rotation -- 2.5.1. Method I: Constraint Conditions -- 2.5.2. Method II: Euclidian Distance Function -- 2.6. Path of a Point on a Link with General Plane Motion -- 2.7. Creating a Movie -- 3. Velocity and Acceleration Analysis -- 3.1. Introduction -- 3.2. Velocity Field for a Rigid Body -- 3.3. Acceleration Field for a Rigid Body -- 3.4. Motion of a Point that Moves Relative to a Rigid Body -- 3.5. Slider-Crank (R-RRT) Mechanism -- 3.6. Four-Bar (R-RRT) Mechanism -- 3.7. Inverted Slider-Crank Mechanism -- 3.8. R-RTR-RTR Mechanism -- 3.9. Derivative Method -- 3.10. Independent Contour Equations -- 4. Dynamic Force Analysis -- 4.1. Equation of Motion for General Planar Motion -- 4.2. D'Alembert's Principle -- 4.3. Free-Body Diagrams -- 4.4. Force Analysis Using Dyads -- 4.4.1. RRR Dyad -- 4.4.2. RRT Dyad -- 4.4.3. RTR Dyad -- 4.5. Force Analysis Using Contour Method -- 4.6. Slider-Crank (R-RRT) Mechanism -- 4.6.1. Inertia Forces and Moments -- 4.6.2. Joint Forces and Drive Moment -- 4.7. R-RTR-RTR Mechanism -- 4.7.1. Inertia Forces and Moments -- 4.7.2. Joint Forces and Drive Moment -- 5. Direct Dynamics: Newton-Euler Equations of Motion -- 5.1. Compound Pendulum -- 5.2. Double Pendulum -- 5.3. One-Link Planar Robot Arm -- 5.4. Two-Link Planar Robot Arm -- 6.1. Generalized Coordinates and Constraints -- 6.2. Laws of Motion -- 6.3. Lagrange's Equations for Two-Link Robot Arm -- 6.4. Rotation Transformation -- 6.5. RRT Robot Arm -- 6.5.1. Direct Dynamics -- 6.5.2. Inverse Dynamics -- 6.5.3. Kane's Dynamical Equations -- 6.6. RRTR Robot Arm -- 7. Problems -- 7.1. Problem Set: Mechanisms -- 7.2. Problem Set: Robots -- A Programs of -- 2. Position Analysis -- A.1 Slider-Crank (R-RRT) Mechanism -- A.2 Four-Bar (R-RRR) Mechanism -- A.3 R-RTR-RTR Mechanism -- A.4 R-RTR-RTR Mechanism: Complete Rotation -- A.5 R-RTR-RTR Mechanism: Complete Rotation Using Euclidian Distance Function -- A.6 Path of a Point on a Link with General Plane Motion: R-RRT Mechanism -- A.7 Path of a Point on a Link with General Plane Motion: R-RRR Mechanism -- B Programs of -- 3. Velocity and Acceleration Analysis -- B.1 Slider-Crank (R-RRT) Mechanism -- B.2 Four-Bar (R-RRR) Mechanism -- B.3 Inverted Slider-Crank Mechanism -- B.4 R-RTR-RTR Mechanism -- B.5 R-RTR-RTR Mechanism: Derivative Method -- B.6 Inverted Slider-Crank Mechanism: Derivative Method -- B.7 R-RTR Mechanism: Derivative Method -- B.8 R-RRR Mechanism: Derivative Method -- B.9 R-RTR-RTR Mechanism: Contour Method -- C Programs of -- 4. Dynamic Force Analysis -- C.1 Slider-Crank (R-RRT) Mechanism: Newton-Euler Method -- C.2 Slider-Crank (R-RRT) Mechanism: D'Alembert's Principle -- C.3 Slider-Crank (R-RRT) Mechanism: Dyad Method -- C.4 Slider-Crank (R-RRT) Mechanism: Contour Method -- C.5 R-RTR-RTR Mechanism: Newton-Euler Method -- C.6 R-RTR-RTR Mechanism: Dyad Method -- C.7 R-RTR-RTR Mechanism: Contour Method -- D Programs of -- 5. Direct Dynamics -- D.1 Compound Pendulum -- D.2 Compound Pendulum Using the Function R (t,x) -- D.3 Double Pendulum -- D.4 Double Pendulum Using the File RR.m -- D.5 One-Link Planar Robot Arm -- D.6 One-Link Planar Robot Arm Using the m-File Function Rrobot.m -- D.7 Two-Link Planar Robot Arm Using the m-File Function RRrobot.m -- E Programs of -- 6. Analytical Dynamics -- E.1 Lagrange's Equations for Two-Link Robot Arm -- E.2 Two-Link Robot Arm: Inverse Dynamics -- E.3 RRT Robot Arm -- E.4 RRT Robot Arm: Inverse Dynamics -- E.5 RRT Robot Arm: Kane's Dynamical Equations -- E.6 RRTR Robot Arm.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Book City Campus City Campus Main Collection 629.892 MAR (Browse shelf(Opens below)) 1 Available A455021B

Includes bibliographical references and index.

1. Introduction -- 1.1. Degrees of Freedom and Motion -- 1.2. Kinematic Pairs -- 1.3. Dyads -- 1.4. Independent Contours -- 1.5. Planar Mechanism Decomposition -- 2. Position Analysis -- 2.1. Absolute Cartesian Method -- 2.2. Slider-Crank (R-RRT) Mechanism -- 2.3. Four-Bar (R-RRR) Mechanism -- 2.4. R-RTR-RTR Mechanism -- 2.5. R-RTR-RTR Mechanism: Complete Rotation -- 2.5.1. Method I: Constraint Conditions -- 2.5.2. Method II: Euclidian Distance Function -- 2.6. Path of a Point on a Link with General Plane Motion -- 2.7. Creating a Movie -- 3. Velocity and Acceleration Analysis -- 3.1. Introduction -- 3.2. Velocity Field for a Rigid Body -- 3.3. Acceleration Field for a Rigid Body -- 3.4. Motion of a Point that Moves Relative to a Rigid Body -- 3.5. Slider-Crank (R-RRT) Mechanism -- 3.6. Four-Bar (R-RRT) Mechanism -- 3.7. Inverted Slider-Crank Mechanism -- 3.8. R-RTR-RTR Mechanism -- 3.9. Derivative Method -- 3.10. Independent Contour Equations -- 4. Dynamic Force Analysis -- 4.1. Equation of Motion for General Planar Motion -- 4.2. D'Alembert's Principle -- 4.3. Free-Body Diagrams -- 4.4. Force Analysis Using Dyads -- 4.4.1. RRR Dyad -- 4.4.2. RRT Dyad -- 4.4.3. RTR Dyad -- 4.5. Force Analysis Using Contour Method -- 4.6. Slider-Crank (R-RRT) Mechanism -- 4.6.1. Inertia Forces and Moments -- 4.6.2. Joint Forces and Drive Moment -- 4.7. R-RTR-RTR Mechanism -- 4.7.1. Inertia Forces and Moments -- 4.7.2. Joint Forces and Drive Moment -- 5. Direct Dynamics: Newton-Euler Equations of Motion -- 5.1. Compound Pendulum -- 5.2. Double Pendulum -- 5.3. One-Link Planar Robot Arm -- 5.4. Two-Link Planar Robot Arm -- 6.1. Generalized Coordinates and Constraints -- 6.2. Laws of Motion -- 6.3. Lagrange's Equations for Two-Link Robot Arm -- 6.4. Rotation Transformation -- 6.5. RRT Robot Arm -- 6.5.1. Direct Dynamics -- 6.5.2. Inverse Dynamics -- 6.5.3. Kane's Dynamical Equations -- 6.6. RRTR Robot Arm -- 7. Problems -- 7.1. Problem Set: Mechanisms -- 7.2. Problem Set: Robots -- A Programs of -- 2. Position Analysis -- A.1 Slider-Crank (R-RRT) Mechanism -- A.2 Four-Bar (R-RRR) Mechanism -- A.3 R-RTR-RTR Mechanism -- A.4 R-RTR-RTR Mechanism: Complete Rotation -- A.5 R-RTR-RTR Mechanism: Complete Rotation Using Euclidian Distance Function -- A.6 Path of a Point on a Link with General Plane Motion: R-RRT Mechanism -- A.7 Path of a Point on a Link with General Plane Motion: R-RRR Mechanism -- B Programs of -- 3. Velocity and Acceleration Analysis -- B.1 Slider-Crank (R-RRT) Mechanism -- B.2 Four-Bar (R-RRR) Mechanism -- B.3 Inverted Slider-Crank Mechanism -- B.4 R-RTR-RTR Mechanism -- B.5 R-RTR-RTR Mechanism: Derivative Method -- B.6 Inverted Slider-Crank Mechanism: Derivative Method -- B.7 R-RTR Mechanism: Derivative Method -- B.8 R-RRR Mechanism: Derivative Method -- B.9 R-RTR-RTR Mechanism: Contour Method -- C Programs of -- 4. Dynamic Force Analysis -- C.1 Slider-Crank (R-RRT) Mechanism: Newton-Euler Method -- C.2 Slider-Crank (R-RRT) Mechanism: D'Alembert's Principle -- C.3 Slider-Crank (R-RRT) Mechanism: Dyad Method -- C.4 Slider-Crank (R-RRT) Mechanism: Contour Method -- C.5 R-RTR-RTR Mechanism: Newton-Euler Method -- C.6 R-RTR-RTR Mechanism: Dyad Method -- C.7 R-RTR-RTR Mechanism: Contour Method -- D Programs of -- 5. Direct Dynamics -- D.1 Compound Pendulum -- D.2 Compound Pendulum Using the Function R (t,x) -- D.3 Double Pendulum -- D.4 Double Pendulum Using the File RR.m -- D.5 One-Link Planar Robot Arm -- D.6 One-Link Planar Robot Arm Using the m-File Function Rrobot.m -- D.7 Two-Link Planar Robot Arm Using the m-File Function RRrobot.m -- E Programs of -- 6. Analytical Dynamics -- E.1 Lagrange's Equations for Two-Link Robot Arm -- E.2 Two-Link Robot Arm: Inverse Dynamics -- E.3 RRT Robot Arm -- E.4 RRT Robot Arm: Inverse Dynamics -- E.5 RRT Robot Arm: Kane's Dynamical Equations -- E.6 RRTR Robot Arm.

Machine converted from AACR2 source record.

There are no comments on this title.

to post a comment.

Powered by Koha