000 14626cam a2200397 i 4500
005 20221102172110.0
008 110626s2012 gw a b 001 0 eng d
011 _aBIB MATCHES WORLDCAT
020 _a3642225365
020 _a9783642225369
035 _a(ATU)b12489621
035 _a(OCoLC)733249494
040 _aBTCTA
_beng
_erda
_cBTCTA
_dUKMGB
_dYDXCP
_dTJC
_dATU
050 4 _aTL545
_b.A43 2012
082 0 4 _a629.1
_223
100 1 _aAlber, Irwin E.,
_eauthor.
_91094531
245 1 0 _aAerospace engineering on the back of an envelope /
_cIrwin E. Alber.
264 1 _aHeidelberg :
_bSpringer ;
_aChichester, UK :
_bPublished in association with Praxis Publishing,
_c2012.
300 _axix, 326 pages :
_billustrations ;
_c25 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aSpringer-Praxis books in astronautical engineering
504 _aIncludes bibliographical references and index.
505 0 _a1. Introduction -- 2. Design of a high school science-fair electro-mechanical robot -- 3. Estimating Shuttle launch, orbit, and payload magnitudes -- 4. Columbia Shuttle accident analysis with Back-of-the-Envelope methods -- 5. Estimating the Orbiter reentry trajectory and the associated peak heating rates -- 6. Estimating the dimensions and performance of the Hubble Space Telescope -- --
505 0 0 _g1.
_tIntroduction --
_g1.1.
_tWhy Back-of-the-Envelope engineering? --
_g1.1.1.
_tBack-of-the-Envelope engineering; an important adaptation and survival skill for students and practicing engineers --
_g1.1.2.
_tDesign of a high school science fair electro-mechanical robot --
_g1.1.3.
_tDesign of a new commercial rocket launch vehicle for a senior engineering student's design project --
_g1.1.4.
_tPreliminary design of a new telescope system by an engineer transferred to a new optical project --
_g1.1.5.
_tExamining the principles and ideas behind Back-of-the- Envelope estimation --
_g1.2.
_tWhat is a Back-of-the-Envelope engineering estimate? --
_g1.2.1.
_tTradeoffbetween complexity and accuracy --
_g1.2.2.
_tBack-of-the-Envelope reasoning --
_g1.2.3.
_tFermi problems --
_g1.2.4.
_tAn engineering Fermi problem --
_g1.3.
_tGeneral guidelines for building a good engineering model --
_g1.3.1.
_tStep by step towards estimation --
_g1.3.2.
_tQuick-Fire estimates --
_g1.4.
_tQuick-Fire estimate of cargo mass delivered to orbit by the Space Shuttle --
_g1.4.1.
_tCargo mass problem definition --
_g1.4.2.
_tLevel-0 estimate: the empirical ''rule of thumb'' model --
_g1.4.3.
_tLevel-1 estimate: cargo mass using a single stage mathematical model based on the ideal rocket velocity equation --
_g1.4.4.
_tLevel-2 estimate: cargo mass using a two stage vehicle model based on the ideal rocket velocity equation --
_g1.4.5.
_tLevel-3 estimate: cargo mass delivered by a two stage vehicle; based on a revised estimate for second stage structural mass fraction --
_g1.4.6.
_tImpact of added knowledge and degree of model complexity --
_g1.4.7.
_tMoving from the Shuttle to the Hubble Space Telescope --
_g1.5.
_tEstimating the size of the optical system for the Hubble Space Telescope --
_g1.5.1.
_tSystem requirements for the HST --
_g1.5.2.
_tShuttle constraint on HST size --
_g1.5.3.
_tEstimating the length of the HST optical package --
_g1.6.
_tConcluding remarks --
_g1.7.
_tOutline of this book --
_g1.8.
_tReferences --
_g2.
_tDesign of a high school science-fair electro-mechanical robot --
_g2.1.
_tThe Robot-Kicker Science Fair Project --
_g2.2.
_tBack-of-the-Envelope model and analysis for a solenoid kicking device --
_g2.2.1.
_tDefining basic dimensions and required soccer ball velocity --
_g2.2.2.
_tSetting up a Bot Emodel for the solenoid kicking soccer ball problem --
_g2.2.3.
_tModel for solenoid kicker work and force --
_g2.2.4.
_tFinal design requirements for linear-actuator solenoid and supporting electrical system --
_g2.3.
_tAppendix: Modeling of the temperature rise produced by ohmic heating from single or multiple solenoid-actuator kicks --
_g2.3.1.
_tQuick-Fire problem approach --
_g2.3.2.
_tProblem definition and sketch --
_g2.3.3.
_tThe baseline mathematical model --
_g2.3.4.
_tPhysical parameters and data --
_g2.3.5.
_tNumerical results --
_g2.3.6.
_tInterpretation of results --
_g2.4.
_tReferences --
_g3.
_tEstimating Shuttle launch, orbit, and payload magnitudes --
_g3.1.
_tIntroduction --
_g3.1.1.
_tEarly Space Shuttle goals and the design phase --
_g3.1.2.
_tThe Shuttle testing philosophy and the need for modeling --
_g3.1.3.
_tBack-of-the-Envelope analysis of Shuttle launch, orbit, and payload magnitudes --
_g3.2.
_tShuttle launch, orbit, and reentry basics --
_g3.2.1.
_tThe liftoffto orbit sequence --
_g3.2.2.
_tReentry --
_g3.3.
_tInventory of the Shuttle's mass and thrust as input to the calculation of burnout velocity --
_g3.3.1.
_tBurnout velocity --
_g3.3.2.
_tThe velocity budget --
_g3.3.3.
_tMass inventory --
_g3.3.4.
_tThrust and specific impulse inventory --
_g3.4.
_tMass fraction rules of thumb --
_g3.5.
_tQuick-Fire modeling of the takeoffmass components and takeoffthrust using SMAD rules of thumb --
_g3.5.1.
_tQuick-Fire problem approach --
_g3.5.2.
_tProblem definition and sketch --
_g3.5.3.
_tMathematical/''Rule of Thumb'' empirical models --
_g3.5.4.
_tPhysical parameters and data --
_g3.5.5.
_tNumerical calculation of total takeoffmass, cargo bay mass, and total takeoffthrust --
_g3.5.6.
_tInterpretation of the Quick-Fire results --
_g3.5.7.
_tFrom Quick-Fire estimates to Shuttle solutions using more accurate inputs --
_g3.6.
_tIdeal velocity change Dv for each stage of an ideal rocket system --
_g3.6.1.
_tPropellant mass versus time --
_g3.6.2.
_tTime varying velocity change --
_g3.6.3.
_tEffective burnout time and average flow rate --
_g3.6.4.
_tIdeal altitude or height for each rocket stage --
_g3.7.
_tDvideal estimate for Shuttle first stage, without gravity loss --
_g3.7.1.
_tEstimate of SSME propellant mass burned during first stage --
_g3.7.2.
_tFirst stage mass ratio and average effective exhaust velocity --
_g3.7.3.
_tAverage specific impulse for the ''parallel'' (solidþliquid) first stage burn --
_g3.7.4.
_tDvideal estimate for Shuttle first stage --
_g3.7.5.
_tDvideal and altitude as functions of time, for the Shuttle first stage --
_g3.8.
_tThe effect of gravity on velocity during first stage flight --
_g3.8.1.
_tModeling the effects of gravity for a curved flight trajectory --
_g3.8.2.
_tTime-varying pitch angle model --
_g3.8.3.
_tEffect of gravity on rocket velocity during first stage flight --
_g3.8.4.
_tEffect of gravity on rocket height during first stage flight --
_g3.8.5.
_tComparing model velocity and altitude with Shuttle data --
_g3.8.6.
_tGravity loss magnitudes for previously flown launch systems --
_g3.8.7.
_tModel velocity, with gravity loss, compared with flight data --
_g3.8.8.
_tCalculation of gravity-loss corrected velocity at first stage burnout --
_g3.9.
_tThe effect of drag on Shuttle velocity at end of first stage flight --
_g3.9.1.
_tModeling the effects of drag in the equation of motion --
_g3.9.2.
_tEstimating first stage drag loss --
_g3.9.3.
_tFinal drag and gravity-corrected velocity at first stage burnout; key elements of the overall ''velocity budget'' for the first stage --
_g3.10.
_tCalculation of second stage velocities and gravity losses --
_g3.10.1.
_tPitch and gravity loss modeling for the second stage flight period --
_g3.10.2.
_tTime-varying gravity loss solution, region 2a --
_g3.10.3.
_tTime-varying velocity solution, region 2b --
_g3.10.4.
_tCombined velocity solution for regions1, 2a, and 2b and v(MECO) --
_g3.11.
_tSummary of predicted Dv budget for the Shuttle --
_g3.12.
_tComparison of Back-of-the-Envelope modeled Shuttle velocity and altitude as a function of time to NASA's numerical prediction for all stages --
_g3.12.1.
_tComparison of model velocity with NASA's numerical prediction --
_g3.12.2.
_tComparison of model altitude with NASA's numerical prediction --
_g3.12.3.
_tModeled altitude sensitivity to pitch time scale --
_g3.13.
_tEstimating mission orbital velocity requirements for the Shuttle --
_g3.13.1.
_tPart1: circular orbital velocity --
_g3.13.2.
_tPart2: elliptical orbits and the Hohmann transfer Dv's --
_g3.13.3.
_tNumerical values for transfer orbit Dv's --
_g3.13.4.
_tTime of flight for a Hohmann transfer --
_g3.13.5.
_tDirect insertion to a final orbital altitude (without using a parking orbit) --
_g3.14.
_tA Back-of-the-Envelope model to determine Shuttle payload as a function of orbit altitude --
_g3.14.1.
_tAnalytic model for payload as a function of orbital altitude --
_g3.14.2.
_tApproximate linearized solution for payload --
_g3.14.3.
_tReduction in useful cargo mass due to increases in OMS propellant mass --
_g3.14.4.
_tOMS models for correcting cargo or payload mass --
_g3.14.5.
_tModel for rate of change of ''useful cargo'' with altitude --
_g3.14.6.
_tApproximate analytic model for useful cargo --
_g3.14.7.
_tModeling missions to the International Space Station --
_g3.15.
_tTabulated summary of Back-of-the-Envelope equations and numerical results --
_g3.16.
_tReferences --
505 0 0 _g4.
_tColumbia Shuttle accident analysis with Back-of-the-Envelope methods --
_g4.1.
_tThe Columbia accident and Back-of-the-Envelope analysis --
_g4.1.1.
_tBot Emodeling goals for the Columbia accident --
_g4.1.2.
_tQuick estimation vs accurate estimation --
_g4.2.
_tQuick-Fire modeling of the impact velocity of a piece of foam striking the Orbiter wing --
_g4.2.1.
_tInterpretation of Quick-Fire results --
_g4.2.2.
_tThe bridge to more accurate Bot Eresults --
_g4.3.
_tModeling the impact velocity of a piece of foam debris relative to the Orbiter wing; estimations beyond the Quick-Fire time results --
_g4.3.1.
_tLooking at the collision from an earth-fixed or moving Shuttle coordinate system --
_g4.3.2.
_tThe constant drag approximation --
_g4.3.3.
_tAnalytically solving for the impact velocity and mass, given the time to impact --
_g4.3.4.
_tSummary of results for constant acceleration model compared to data --
_g4.3.5.
_tThe non-constant acceleration solution --
_g4.3.6.
_tAn estimate of impact velocity and particle mass, taking the time to impact as given (the ''inverse'' problem) --
_g4.3.7.
_tComparing Osheroff 's ''inverse'' calculations to our ''direct'' estimate results --
_g4.3.8.
_tConcluding thoughts on the impact velocity estimate --
_g4.4.
_tModeling the impact pressure and load caused by impact of foam debris with an RCC wing panel --
_g4.4.1.
_tThe impact load --
_g4.4.2.
_tImpact overview --
_g4.4.3.
_tImpact load mathematical modeling --
_g4.4.4.
_tElastic model for the impact stress --
_g4.4.5.
_tElastic-plastic impact of a one-dimensional rod against a rigid-wall --
_g4.4.6.
_tThe elastic-plastic model --
_g4.4.7.
_tNumerical results and plotted trends --
_g4.4.8.
_tImpact area estimate --
_g4.4.9.
_tLoad estimate --
_g4.4.10.
_tImpact loading time scale (Bot E) --
_g4.4.11.
_tLoading time histories, numerical simulations --
_g4.5.
_tDevelop a Back-of-the-Envelope engineering stress equation for the maximum stress in the RCC panel face for a given panel load --
_g4.5.1.
_tBot Epanel stress model --
_g4.5.2.
_tEstimates for the allowable maximum stress or critical load parameters for failure --
_g4.5.3.
_tFinal comments on the prediction of possible wing damage or failure --
_g4.6.
_tSummary of results for Sections 4.2, 4.3, and 4.4 --
_g4.7.
_tReferences --
_g5.
_tEstimating the Orbiter reentry trajectory and the associated peak heating rates --
_g5.1.
_tIntroduction --
_g5.2.
_tThe deorbit and reentry sequence --
_g5.3.
_tUsing Quick-Fire methods to crudely estimate peak heating rate and total heat loads from the initial Orbiter kinetic energy --
_g5.3.1.
_tQuick-Fire problem definition and sketch --
_g5.3.2.
_tThe Quick-Fire baseline mathematical model, initial results, and interpretation --
_g5.4.
_tAlook at heat flux prediction levels based on an analytical model for blunt-body heating --
_g5.4.1.
_tNumerical estimates of Stanton number using the Sutton- Graves constant --
_g5.5.
_tSimple flight trajectory model --
_g5.5.1.
_tAsimple Bot Emodel for the initial entry period; the entry solution --
_g5.5.2.
_tThe equilibrium glide model --
_g5.6.
_tCalculating heat transfer rates in the peak heating region --
_g5.6.1.
_tSelecting the nose radius --
_g5.6.2.
_tComparing the model maximum rate of heat transfer, q_wmax , with data --
_g5.6.3.
_tModel estimate for nose radiation equilibrium temperature, Tmax --
_g5.6.4.
_tModel calculations of q_w as a function of time --
_g5.6.5.
_tModel calculations for total heat load at the stagnation point --
_g5.7.
_tAppendix: Bot Emodeling of non-Orbiter entry problems --
_g5.8.
_tReferences --
_g6.
_tEstimating the dimensions and performance of the Hubble Space Telescope --
_g6.1.
_tThe Hubble Space Telescope --
_g6.1.1.
_tHST system requirements --
_g6.1.2.
_tHST engineering systems --
_g6.1.3.
_tRequirements for fitting the HST into the Orbiter --
_g6.2.
_tThe HST Optical Telescope design --
_g6.2.1.
_tThe equivalent system focal length --
_g6.2.2.
_tHow do designers determine the required system focal ratio, Feq? --
_g6.2.3.
_tTelescope plate scale --
_g6.2.4.
_tSelection of HST's primary mirror focal ratio, F 1 1/4 jf1j=D --
_g6.2.5.
_tCalculating the magnification m and exact constructional length L --
_g6.2.6.
_tEstimating the secondary mirror diameter --
_g6.2.7.
_tEstimating the radius of curvature of the HST secondary mirror --
_g6.3.
_tModeling the HST length --
_g6.3.1.
_tThe light-shield baffle extension --
_g6.3.2.
_tModeling the length of the light shield --
_g6.3.3.
_tThe length of the instrument section --
_g6.3.4.
_tCalculating the total HST telescope length --
_g6.4.
_tSummary of calculated HST dimensions --
_g6.5.
_tEstimating HST mass --
_g6.5.1.
_tPrimary mirror design --
_g6.5.2.
_tEstimating primary mirror mass --
_g6.5.3.
_tThe estimated total HST system mass and areal density --
_g6.5.4.
_tSome final words on the HST mass estimation exercise --
_g6.5.5.
_tOnward to an estimate of HST's sensitivity --
_g6.6.
_tBack-of-the-Envelope modeling of the HST's sensitivity or signal to noise ratio --
_g6.6.1.
_tDefining signal to noise ratio --
_g6.6.2.
_tModeling the mean signal, S --
_g6.6.3.
_tModeling the noise --
_g6.6.4.
_tFinal equation for signal to noise ratio --
_g6.6.5.
_tFinal thoughts on Bot Eestimates for HST sensitivity --
_g6.7.
_tReferences.
588 _aMachine converted from AACR2 source record.
650 0 _aAerospace engineering
_9328467
650 0 _aEngineering design.
_9317331
830 0 _aSpringer-Praxis books in astronautical engineering.
_91082775
907 _a.b12489621
_b06-09-21
_c28-10-15
942 _cB
945 _a629.1 ALB
_g1
_iA509249B
_j0
_lcmain
_o-
_p$187.43
_q-
_r-
_s-
_t0
_u4
_v0
_w1
_x3
_y.i13243858
_z29-10-15
998 _ab
_ac
_b06-04-16
_cm
_da
_feng
_ggw
_h0
999 _c1236484
_d1236484