000 11535cam a2200373 i 4500
005 20221102163826.0
008 111024s2011 gw a b 000 0 eng d
011 _aBIB MATCHES WORLDCAT
020 _a9400717024
020 _a9789400717022
035 _a(ATU)b12207287
035 _a(OCoLC)731922094
040 _aBTCTA
_beng
_erda
_cBTCTA
_dYDXCP
_dUKMGB
_dBWX
_dDCU
_dCDX
_dATU
082 0 4 _a624.17
_223
245 0 0 _aVibration and structural acoustics analysis :
_bcurrent research and related technologies /
_cC.M.A. Vasques, J. Dias Rodrigues, editors.
264 1 _aDordrecht ;
_aNew York :
_bSpringer,
_c[2011]
264 4 _c©2011
300 _axxx, 327 pages :
_billustrations (some colour) ;
_c24 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references.
505 0 _a1. The Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method -- 2. Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments -- 3. Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration -- 4. A Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom -- 5. Modeling and Testing of a Concrete Pumping Group Control System -- 6. Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam -- 7. An Efficient Sound Source Localization Technique via Boundary Element Method -- 8. Dispersion Analysis of Acoustic Circumferential Waves Using Time-Frequency Representations -- 9. Viscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades -- 10. Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches -- 11. Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics -- --
505 0 0 _g1.
_tThe Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method /
_rL.M.J.S. Dinis, R.M. Natal Jorge, and J. Belinha --
_g1.1.
_tIntroduction --
_g1.2.
_tOverviewof the Stateof the Art --
_g1.3.
_tThe Natural Neighbour Radial Point Interpolation Method --
_g1.4.
_tDynamic Discrete System of Equations --
_g1.5.
_tDynamic Examples --
_g1.5.1.
_tCantilever Beam --
_g1.5.2.
_tVariable Cross Section Beams --
_g1.5.3.
_tShear-Wall --
_g1.5.4.
_tSquare Plates --
_g1.5.5.
_tShallow Shell --
_g1.6.
_tProspects for the Future --
_g1.7.
_tSummary --
_g1.8.
_tSelected Bibliography --
_g2.
_tVibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments /
_rM.A. Pérez Martínez, P. Poletti, and L. Gil Espert --
_g2.1.
_tIntroduction --
_g2.2.
_tOverviewof the Stateof the Art --
_g2.3.
_tOrthotropic Nature of Wood Properties --
_g2.4.
_tInfluence of Moisture Changes on Wood --
_g2.5.
_tExperimental Modal Analysis of Wooden Specimens --
_g2.6.
_tNumerical Model of Wooden Plate --
_g2.6.1.
_tThe Finite Element Method --
_g2.6.2.
_tFree Vibrations of Kirchhoff Plates --
_g2.6.3.
_tPerturbationof the Equationof Motion --
_g2.7.
_tElastic Constants from Plate Vibration Measurements --
_g2.8.
_tResults --
_g2.9.
_tConcluding Remarks --
_g2.10.
_tProspects for the Future --
_g2.11.
_tSummary --
_g3.
_tShort-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration /
_rV.-H. Vu, M. Thomas, A.A. Lakis, and L. Marcouiller --
_g3.1.
_tIntroduction --
_g3.2.
_tOverviewof the Stateof the Art --
_g3.2.1.
_tOperational Modal Analysis --
_g3.2.2.
_tNon-stationary Vibration --
_g3.2.3.
_tFluid-Structure Interaction --
_g3.2.4.
_tDevelopment of a New Method for Investigating Modal Parameters of Non-stationary Systems by Operational Modal Analysis --
_g3.3.
_tVector Autoregressive (VAR)Modeling --
_g3.4.
_tThe Short Time Autoregressive (STAR) Method --
_g3.4.1.
_tOrder Updating and a Criterion for Minimum Model Order Selection --
_g3.4.2.
_tWorking Procedure --
_g3.5.
_tNumerical Simulation on a Mechanical System --
_g3.5.1.
_tDiscussion on Data Block Length --
_g3.5.2.
_tSimulation on Mechanical System with Time-Dependent Parameters --
_g3.6.
_tExperimental Application on an Emerging Steel Plate --
_g3.7.
_tProspects for the Future --
_g3.8.
_tSummary --
_g3.9.
_tSelected Bibliography --
_g4.
_tA Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom /
_rG. Cazzulani, M. Ferrari, F. Resta, and F. Ripamonti --
_g4.1.
_tIntroduction --
_g4.2.
_tOverviewof the Stateof the Art --
_g4.3.
_tThe System --
_g4.3.1.
_tTest Rig --
_g4.3.2.
_tNumerical Model --
_g4.4.
_tActive Modal Control --
_g4.4.1.
_tIndependent Modal Control --
_g4.4.2.
_tThe Modal Observer --
_g4.4.3.
_tNumerical Analysis of Modal Control --
_g4.5.
_tFeed-Forward Control --
_g4.5.1.
_tThe Feed-Forward Control Logic --
_g4.5.2.
_tNumerical Analysis of the Feed-Forward Control --
_g4.6.
_tExperimental Testing --
_g4.7.
_tProspects for the Future --
_g4.8.
_tSummary --
_g4.9.
_tSelected Bibliography --
_g5.
_tModeling and Testing of a Concrete Pumping Group Control System /
_rC. Ghielmetti, H. Giberti, and F. Resta --
_g5.1.
_tIntroduction --
_g5.2.
_tOverviewof the Stateof the Art --
_g5.3.
_tDescriptionof the Entire System --
_g5.4.
_tExperimental Tests --
_g5.5.
_tMathematical Model --
_g5.5.1.
_tOil Continuity Equations --
_g5.5.2.
_tConcrete Continuity Equations --
_g5.5.3.
_tEquationsof Motion --
_g5.6.
_tComparison Between Numerical and Experimental Results --
_g5.7.
_tControl System Design --
_g5.8.
_tProspects for the Future --
_g5.9.
_tSummary --
_g5.10.
_tSelected Bibliography --
_g6.
_tVibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam /
_rR. Loendersloot, T.H. Ooijevaar, L. Warnet, A. de Boer, and R. Akkerman --
_g6.1.
_tIntroduction --
_g6.2.
_tOverviewof the Stateof the Art --
_g6.2.1.
_tVibration Based Structural Health Monitoring --
_g6.2.2.
_tModal Strain Energy Damage Index Algorithm --
_g6.3.
_tT-Beam with T-Joint Stiffener --
_g6.4.
_tTheory of the Modal Strain Energy Damage Index Algorithm --
_g6.5.
_tFinite Element Model --
_g6.6.
_tExperimental Analysis of the T-Beam --
_g6.7.
_tResults and Discussion --
_g6.7.1.
_tValidation of Numerical Model --
_g6.7.2.
_tLength and Starting Point of Delamination --
_g6.7.3.
_tPosition of Evaluation Points --
_g6.7.4.
_tNumberof Evaluation Points --
_g6.7.5.
_tIncorporation of Torsion Modes --
_g6.8.
_tProspects for the Future --
_g6.9.
_tSummary --
_g6.10.
_tSelected Bibliography --
_g7.
_tAn Efficient Sound Source Localization Technique via Boundary Element Method /
_rA. Seçgin and A.S. Sarıgül --
_g7.1.
_tIntroduction --
_g7.2.
_tOverviewof the Stateof the Art --
_g7.3.
_tHelmholtz Integral Equation and Boundary Element Method --
_g7.3.1.
_tFull-Space Case --
_g7.3.2.
_tHalf-Space Case --
_g7.4.
_tTheoretical Examples: Sound Field Determination --
_g7.5.
_tCase Study: Sound Source Localization --
_g7.5.1.
_tSurface Velocity Measurements --
_g7.5.2.
_tBoundary Element Operations --
_g7.5.3.
_tSound Source Identification and Characterization --
_g7.6.
_tProspects for the Future --
_g7.7.
_tSummary --
_g7.8.
_tSelected Bibliography --
_g8.
_tDispersion Analysis of Acoustic Circumferential Waves Using Time-Frequency Representations /
_rR. Latif, M. Laaboubi, E.H. Aassif, and G. Maze --
_g8.1.
_tIntroduction --
_g8.2.
_tOverviewof the Stateof the Art --
_g8.3.
_tTime-Frequency Representations --
_g8.3.1.
_tWigner-Ville Distribution --
_g8.3.2.
_tSpectrogram Distribution --
_g8.3.3.
_tReassignment Spectrogram --
_g8.4.
_tAcoustic Measured Signal Backscattered by an Elastic Tube --
_g8.4.1.
_tExperimental Setup --
_g8.4.2.
_tMeasured Acoustic Response --
_g8.4.3.
_tResonance Spectrum --
_g8.5.
_tTime-Frequency Images of Experimental Acoustic Signal --
_g8.5.1.
_tSpectrogram and Wigner-Ville Images --
_g8.5.2.
_tReassigned Spectrogram Image --
_g8.6.
_tDispersionof the Circumferential Waves --
_g8.6.1.
_tDetermination of Dispersion Curves of Circumferential Waves by the Theoretical Method --
_g8.6.2.
_tDetermination of Dispersion Curves of Circumferential Waves by the Reassigned Spectrogram Image --
_g8.7.
_tProspects for the Future --
_g8.8.
_tSummary --
_g8.9.
_tSelected Bibliography --
_g9.
_tViscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades /
_rC.M.A. Vasques and L.C. Cardoso --
_g9.1.
_tIntroduction --
_g9.2.
_tOverviewof the Stateof the Art --
_g9.3.
_tConfigurations of Viscoelastic Damping Treatments --
_g9.4.
_tViscoelastic Constitutive Behavior --
_g9.5.
_tFinite Element Modeling of Viscoelastic Structural Systems --
_g9.5.1.
_tSome Comments on Deformation Theories --
_g9.5.2.
_tSpatial Modelingand Meshing --
_g9.5.3.
_tDamping Modeling and Solution Approaches --
_g9.5.4.
_tFrequency- and Time-Domain Implementations --
_g9.5.5.
_tCommercial FESoftware --
_g9.6.
_tVibroacoustic Simulation and Analysis --
_g9.7.
_tCircular Saw Blades Damping: Modeling, Analysis and Design --
_g9.7.1.
_tGeometric and Material Properties of the "Saw" --
_g9.7.2.
_tFE Modeling and Vibroacoustic Media Discretization --
_g9.7.3.
_tResults --
_g9.8.
_tProspects for the Future --
_g9.9.
_tSummary --
_g10.
_tVibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches /
_rM. Collet, M. Ouisse, K.A. Cunefare, M. Ruzzene, B. Beck, L. Airoldi, and F. Casadei --
_g10.1.
_tIntroduction --
_g10.2.
_tOverviewof the Stateof the Art --
_g10.3.
_tClassical Tools for Designing RL and RCneg Shunt Circuits --
_g10.3.1.
_tPiezoelectric Modeling and Shunt Circuit Design --
_g10.4.
_tControlling the Dispersion in Beams and Plates --
_g10.4.1.
_tWaves Dispersion Control by Using RL and Negative Capacitance Shunts on Periodically Distributed Piezoelectric Patches --
_g10.4.2.
_tPeriodically Distributed Shunted Piezoelectric Patches for Controlling Structure Borne Noise --
_g10.5.
_tOptimizing Wave's Diffusionin Beam --
_g10.5.1.
_tDescription and Modeling of a Periodic Beam System --
_g10.5.2.
_tOptimization of Power Flow Diffusion by Negative Capacitance Shunt Circuits --
_g10.5.3.
_tOptimization of Wave Reflection and Transmission --
_g10.6.
_tProspects for the Future --
_g10.7.
_tSummary --
_g11.
_tIdentification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics /
_rM. Ouisse and E. Foltête --
_g11.1.
_tIntroduction --
_g11.2.
_tOverviewof the Stateof the Art --
_g11.3.
_tProperness Condition in Structural Dynamics --
_g11.3.1.
_tProperness of Complex Modes --
_g11.3.2.
_tIllustration of Properness Impact on Inverse Procedure --
_g11.3.3.
_tProperness Enforcement --
_g11.3.4.
_tExperimental Illustration --
_g11.4.
_tExtension of Properness to Vibroacoustics --
_g11.4.1.
_tEquationsof Motion --
_g11.4.2.
_tComplex Modes for Vibroacoustics --
_g11.4.3.
_tProperness for Vibroacoustics --
_g11.4.4.
_tMethodologies for Properness Enforcement --
_g11.4.5.
_tNumerical Illustration --
_g11.4.6.
_tExperimental Test-Case --
_g11.5.
_tProspects for the Future --
_g11.6.
_tSummary --
_g11.7.
_tSelected Bibliography.
588 _aMachine converted from AACR2 source record.
650 0 _aStructural analysis (Engineering)
_9324588
650 0 _aAcoustical engineering.
_9313352
700 1 _aVasques, C. M. A.
_91090336
700 1 _aRodrigues, J. Dias.
_91090337
907 _a.b12207287
_b06-09-21
_c28-10-15
942 _cB
945 _a624.17 VIB
_g1
_iA506243B
_j0
_lcmain
_o-
_p$141.50
_q-
_r-
_s-
_t0
_u0
_v0
_w0
_x0
_y.i13202443
_z29-10-15
998 _ab
_ac
_b06-04-16
_cm
_da
_feng
_ggw
_h0
999 _c1229358
_d1229358