000 13229cam a2200409 i 4500
005 20221115154859.0
008 110310s2011 enka b 001 0 eng d
011 _aBIB MATCHES WORLDCAT
020 _a1849961212
_qhbk.
020 _a9781849961219
_qhbk.
035 _a(ATU)b11898902
035 _a(OCoLC)659245314
040 _aUKM
_beng
_erda
_cUKM
_dPUL
_dATU
050 4 _aTJ211.35
_b.L36 2011
082 0 4 _a629.892
_222
100 1 _aLantos, Béla,
_eauthor.
_9286673
245 1 0 _aNonlinear control of vehicles and robots /
_cby Béla Lantos, Lőrinc Márton.
264 1 _aLondon :
_bSpringer,
_c2011.
300 _axxviii, 459 pages :
_billustrations ;
_c24 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aAdvances in industrial control,
_x1430-9491
504 _aIncludes bibliographical references (pages 447-453) and index.
505 0 0 _g1.
_tIntroduction--
_g1.1.
_tBasic Notions, Background--
_g1.2.
_tA Short History--
_g1.3.
_tControl Systems for Vehicles and Robots, Research Motivation--
_g1.4.
_tOutline of the Following Chapters--
_g2.
_tBasic Nonlinear Control Methods--
_g2.1.
_tNonlinear System Classes--
_g2.1.1.
_tState Equation of Nonlinear Systems--
_g2.1.2.
_tHolonomic and Nonholonomic Systems--
_g2.1.3.
_tDifferentially Flat Systems--
_g2.2.
_tDynamic Model of Simple Systems--
_g2.2.1.
_tDynamic Model of Inverted Pendulum--
_g2.2.2.
_tCar Active Suspension Model--
_g2.2.3.
_tThe Model of the 2 DOF Robot Arm--
_g2.3.
_tStability of Nonlinear Systems--
_g2.3.1.
_tStability Definitions--
_g2.3.2.
_tLyapunov Stability Theorems--
_g2.3.3.
_tBarbalat Lemmas--
_g2.3.4.
_tStability of Interconnected Passive Systems--
_g2.4.
_tInput-Output Linearization--
_g2.5.
_tFlatness Control--
_g2.6.
_tBackstepping--
_g2.7.
_tSliding Control--
_g2.7.1.
_tSliding Control of Second Order Systems--
_g2.7.2.
_tControl Chattering--
_g2.7.3.
_tSliding Control of Robot--
_g2.8.
_tReceding Horizon Control--
_g2.8.1.
_tNonlinear Receding Horizon Control--
_g2.8.2.
_tNonlinear RHC Control of 2D Crane--
_g2.8.3.
_tRHC Based on Linearization at Each Horizon--
_g2.9.
_tClosing Remarks--
_g3.
_tDynamic Models of Ground, Aerial and Marine Robots--
_g3.1.
_tDynamic Model of Rigid Body--
_g3.1.1.
_tDynamic Model Based on Newton-Euler Equations--
_g3.1.2.
_tKinematic Model Using Euler (RPY) Angles--
_g3.1.3.
_tKinematic Model Using Quaternion--
_g3.2.
_tDynamic Model of Industrial Robot--
_g3.2.1.
_tRecursive Computation of the Kinematic Quantities--
_g3.2.2.
_tRobot Dynamic Model Based on Appell's Equation--
_g3.2.3.
_tRobot Dynamic Model Based on Lagrange's Equation--
_g3.2.4.
_tDynamic Model of SCARA Robot--
_g3.3.
_tDynamic Model of Car--
_g3.3.1.
_tNonlinear Model of Car--
_g3.3.2.
_tInput Affine Approximation of the Dynamic Model--
_g3.3.3.
_tLinearized Model for Constant Velocity--
_g3.4.
_tDynamic Model of Airplane--
_g3.4.1.
_tCoordinate Systems for Navigation--
_g3.4.2.
_tAirplane Kinematics--
_g3.4.3.
_tAirplane Dynamics--
_g3.4.4.
_tWind-Axes Coordinate System--
_g3.4.5.
_tGravity Effect--
_g3.4.6.
_tAerodynamic Forces and Torques--
_g3.4.7.
_tGyroscopic Effect of Rotary Engine--
_g3.4.8.
_tState Equationsof Airplane--
_g3.4.9.
_tLinearization of the Nonlinear Airplane Model--
_g3.4.10.
_tParametrization of Aerodynamic and Trust Forces and Moments--
_g3.5.
_tDynamic Model of Surface and Underwater Ships--
_g3.5.1.
_tRigid Body Equationof Ship--
_g3.5.2.
_tHydrodynamic Forces and Moments--
_g3.5.3.
_tRestoring Forces and Moments--
_g3.5.4.
_tBallast Systems--
_g3.5.5.
_tWind, Wave and Current Models--
_g3.5.6.
_tKinematic Model--
_g3.5.7.
_tDynamic Model in Body Frame--
_g3.5.8.
_tDynamic Model in NED Frame--
_g3.6.
_tClosing Remarks--
_g4.
_tNonlinear Control of Industrial Robots--
_g4.1.
_tDecentralized Three-Loop Cascade Control--
_g4.1.1.
_tDynamic Model of DC Motor--
_g4.1.2.
_tDesign of Three-Loop Cascade Controller--
_g4.1.3.
_tApproximation of Load Inertia and Disturbance Torque--
_g4.2.
_tComputed Torque Technique--
_g4.3.
_tNonlinear Decoupling in Cartesian Space--
_g4.3.1.
_tComputation of Equivalent Forces and Torques--
_g4.3.2.
_tComputation of Equivalent Joint Torques--
_g4.3.3.
_tRobot Dynamic Model in Cartesian Space--
_g4.3.4.
_tNonlinear Decoupling of the Free Motion--
_g4.4.
_tHybrid Position and Force Control--
_g4.4.1.
_tGeneralized Task Specification Matrices--
_g4.4.2.
_tHybrid Position/Force Control Law--
_g4.5.
_tSelf-Tuning Adaptive Control--
_g4.5.1.
_tIndependent Parameters of Robot Dynamic Model--
_g4.5.2.
_tControl and Adaptation Laws--
_g4.5.3.
_tSimulation Results for 2-DOF Robot--
_g4.5.4.
_tIdentification Strategy--
_g4.6.
_tRobust Backstepping Control in Case of Nonsmooth Path--
_g4.6.1.
_tGradient Update Laws for Speed Error--
_g4.6.2.
_tControl of 2-DOF Robot Arm Along Rectangle Path--
_g4.7.
_tClosing Remarks--
_g5.
_tNonlinear Control of Cars--
_g5.1.
_tControl Concept of Collision Avoidance System (CAS)--
_g5.2.
_tPath Design Using Elastic Band--
_g5.3.
_tReference Signal Design for Control--
_g5.4.
_tNonlinear Dynamic Model--
_g5.5.
_tDifferential Geometry Based Control Algorithm--
_g5.5.1.
_tExternal State Feedback Design--
_g5.5.2.
_tStability Proof of Zero Dynamics--
_g5.5.3.
_tSimulation Results Using DGAMethod--
_g5.6.
_tReceding Horizon Control--
_g5.6.1.
_tNominal Values and Perturbations--
_g5.6.2.
_tRHCOptimization Using End Constraint--
_g5.7.
_tState Estimation Using GPSand IMU--
_g5.8.
_tSimulation Resultswith RHCControl and State Estimation--
_g5.9.
_tSoftware Implementations--
_g5.9.1.
_tStandalone Programs--
_g5.9.2.
_tQuick Prototype Designfor Target Processors--
_g5.10.
_tClosing Remarks --
505 8 0 _g6.
_tNonlinear Control of Airplanes and Helicopters--
_g6.1.
_tReceding Horizon Control of the Longitudinal Motion of an Airplane--
_g6.1.1.
_tRobust Internal Stabilization Using Disturbance Observer--
_g6.1.2.
_tHigh Level Receding Horizon Control--
_g6.1.3.
_tSimulation Results with External RHC and Internal Disturbance Observer--
_g6.2.
_tBackstepping Control of an Indoor Quadrotor Helicopter--
_g6.2.1.
_tDynamic Model of the Quadrotor Helicopter--
_g6.2.2.
_tSensor System of the Helicopter--
_g6.2.3.
_tState Estimation Using Vision and Inertial Measurements--
_g6.2.4.
_tBackstepping Control Algorithm--
_g6.2.5.
_tEmbedded Control Realization--
_g6.3.
_tClosing Remarks--
_g7.
_tNonlinear Control of Surface Ships--
_g7.1.
_tControl System Structure--
_g7.1.1.
_tReference Path Design--
_g7.1.2.
_tLine-of-Sight Guidance--
_g7.1.3.
_tFiltering Wave Disturbances--
_g7.1.4.
_tState Estimation Using IMUand GPS--
_g7.2.
_tAcceleration Feedback and Nonlinear PD--
_g7.3.
_tNonlinear Decoupling--
_g7.3.1.
_tNonlinear Decoupling in Body Frame--
_g7.3.2.
_tNonlinear Decoupling in NED Frame--
_g7.4.
_tAdaptive Feedback Linearization--
_g7.5.
_tMIMO Backstepping in 6 DOF--
_g7.6.
_tConstrained Control Allocation--
_g7.7.
_tSimulation Results--
_g7.8.
_tClosing Remarks--
_g8.
_tFormation Control of Vehicles--
_g8.1.
_tSelected Approaches in Formation Control of Vehicles--
_g8.2.
_tStabilization of Ground Vehicles Using Potential Field Method--
_g8.2.1.
_tLow Level Linearizing Controller--
_g8.2.2.
_tHigh Level Formation Controller--
_g8.2.3.
_tPassivity Based Formation Stabilization--
_g8.3.
_tSimulation Results for UGVs--
_g8.4.
_tStabilization of Marine Vehicles Using Passivity Theory--
_g8.4.1.
_tProblem Formulation for Synchronized Path Following--
_g8.4.2.
_tControl Structure--
_g8.4.3.
_tStability Proof Based on Passivity Theory--
_g8.5.
_tSimulation Results for UMVs--
_g8.6.
_tClosing Remarks--
_g9.
_tModeling Nonsmooth Nonlinearities in Mechanical Systems--
_g9.1.
_tModeling and Stability of Nonsmooth Systems--
_g9.1.1.
_tModeling and Stability of Switched Systems--
_g9.1.2.
_tModeling, Solution and Stability of Differential Inclusions--
_g9.2.
_tStatic Friction Models--
_g9.2.1.
_tStick-Slip Motion--
_g9.2.2.
_tFriction-Induced Dead Zone--
_g9.3.
_tDynamic Friction Models--
_g9.3.1.
_tClassic Dynamic Friction Models--
_g9.3.2.
_tModified and Advanced Dynamic Friction Models--
_g9.4.
_tPiecewise Linearly Parameterized Friction Model--
_g9.4.1.
_tParameter Equivalence with the Tustin Model--
_g9.4.2.
_tModeling Errors--
_g9.4.3.
_tIncorporating the Dynamic Effects--
_g9.5.
_tBacklash in Mechanical Systems--
_g9.6.
_tClosing Remarks--
_g10.
_tMechanical Control Systems with Nonsmooth Nonlinearities--
_g10.1.
_tSwitched System Model of Mechanical Systems with Stribeck Friction and Backlash--
_g10.2.
_tMotion Control--
_g10.2.1.
_tStabilizing Control--
_g10.2.2.
_tExtension of the Control Law for Tracking--
_g10.2.3.
_tSimulation Results--
_g10.3.
_tFriction and Backlash Induced Limit Cycle Around Zero Velocity--
_g10.3.1.
_tChaotic Measures for Nonlinear Analysis--
_g10.3.2.
_tSimulation Measurements--
_g10.4.
_tFriction Generated Limit Cycle Around Stribeck Velocities--
_g10.4.1.
_tSimulation Results--
_g10.4.2.
_tExperimental Measurements--
_g10.5.
_tClosing Remarks--
_g11.
_tModel Based Identification and Adaptive Compensation of Nonsmooth Nonlinearities--
_g11.1.
_tFriction and Backlash Measurement and Identification in Robotic Manipulators--
_g11.1.1.
_tFriction Measurement and Identification--
_g11.1.2.
_tBacklash Measurement--
_g11.1.3.
_tVelocity Control for Measurements--
_g11.1.4.
_tExperimental Measurements--
_g11.2.
_tFriction Measurement and Identification in Hydraulic Actuators--
_g11.2.1.
_tMathematical Model of Hydraulic Actuators--
_g11.2.2.
_tFriction Measurement and Identification--
_g11.2.3.
_tExperimental Measurements--
_g11.3.
_tNonlinear Control of a Ball and Beam System Using Coulomb Friction Compensation--
_g11.3.1.
_tAdaptive Friction Identification--
_g11.3.2.
_tNonlinear Control Algorithm for the Ball and Beam System--
_g11.3.3.
_tExperimental Evaluations--
_g11.4.
_tAdaptive Payload and Friction Compensation in Robotic Manipulators--
_g11.4.1.
_tSimulation Results-Adaptive Friction Compensation in the Presence of Backlash--
_g11.4.2.
_tExperimental Measurements--
_g11.5.
_tClosing Remarks--
_g12.
_tConclusions and Future Research Directions--
_g12.1.
_tSummary--
_g12.2.
_tFuture Research Directions--
_gAppendix A.
_tKinematic and Dynamic Foundations of Physical Systems--
_gA.
_tOrientation Description Using Rotations and Quaternion--
_gA.
_tHomogeneous Transformations--
_gA.
_tOrientation Description Using Rotations--
_gA.
_tOrientation Description Using Quaternion--
_gA.
_tSolutionof the Inverse Orientation Problem--
_gA.
_tDifferentiation Rule in Moving Coordinate System--
_gA.
_tInertia Parametersof Rigid Objects--
_gA.
_tLagrange, Appell and Newton-Euler Equations--
_gA.
_tLagrange Equation--
_gA.
_tAppell Equation--
_gA.
_tNewton-Euler Equations--
_gA.
_tRobot Kinematics--
_gA.
_tDenavit-Hartenberg Form--
_gA.
_tDirect Kinematic Problem--
_gA.
_tInverse Kinematic Problem--
_gA.
_tRobot Jacobian--
_gAppendix B.
_tBasis of Differential Geometry for Control Problems--
_gB.
_tLie Derivatives, Submanifold, Tangent Space--
_gB.
_tFrobenius Theorem--
_gB.
_tLocal Reachability and Observability--
_gB.
_tInput/Output Linearization, Zero Dynamics.
520 _a"Tracking of autonomous vehicles and the high-precision positioning of robotic manipulators require advanced modeling techniques and control algorithms. Controller design should take into account any model nonlinearities. Nonlinear Control of Vehicles and Robots develops a unified approach to the dynamic modeling of robots in terrestrial, aerial and marine environments. To begin with, the main classes of nonlinear systems and stability methods are summarized. Basic nonlinear control methods useful in manipulator and vehicle control - linearization, backstepping, sliding-mode and receding-horizon control - are presented. Formation control of ground robots and ships is discussed. The second part of the book deals with the modeling and control of robotic systems in the presence of non-smooth nonlinearities including analysis of their influence on the performance of motion control systems. Robust adaptive tracking control of robotic systems with unknown payload and friction in the presence of uncertainties is treated. Theoretical (guaranteed stability, guaranteed tracking precision, boundedness of all signals in the control loop) and practical (implementability) aspects of the control algorithms under discussion are detailed. Examples are included throughout the book allowing the reader to apply the control and modeling techniques in their own research and development work. Some of these examples demonstrate state estimation based on the use of advanced sensors such as Inertial Measurement System, Global Positioning System and vision systems as part of the control system. Nonlinear Control of Vehicles and Robots will interest academic researchers studying the control of robots and industrial research and development engineers and graduate students wishing to become familiar with modern control algorithms and modeling techniques for the most common mechatronics systems: vehicles and robot manipulators."--Publisher's website.
588 _aMachine converted from AACR2 source record.
650 0 _aRobots
_xControl systems
_9327084
650 0 _aNonlinear control theory
_9327326
700 1 _aMárton, Lőrinc.
_91233342
830 0 _aAdvances in industrial control.
_91029378
907 _a.b11898902
_b22-08-17
_c27-10-15
942 _cB
945 _a629.892 LAN
_g1
_iA501782B
_j0
_lcmain
_o-
_p$215.76
_q-
_r-
_s-
_t0
_u1
_v0
_w0
_x0
_y.i13147341
_z29-10-15
998 _ab
_ac
_b06-04-16
_cm
_da
_feng
_genk
_h0
999 _c1219228
_d1219228