000 03615cam a2200421 i 4500
005 20211102092210.0
008 081212s2009 enkae b 001 0 eng d
010 _a 2008008888
011 _aBIB MATCHES WORLDCAT
020 _a0415448379
_qhardback
020 _a9780415448376
_qhardback
020 _a0415448409
_qpbk.
020 _a9780415448406
_qpbk.
035 _a(ATU)b11595103
035 _a(OCoLC)213358072
040 _aDLC
_beng
_erda
_cDLC
_dBAKER
_dYDXCP
_dBTCTA
_dBWK
_dBWKUK
_dCDX
_dBWX
_dHNK
_dATU
050 0 0 _aHA29
_b.T28 2009
082 0 0 _a519.5
_222
100 1 _aTarling, Roger,
_eauthor.
_9268259
245 1 0 _aStatistical modelling for social researchers :
_bprinciples and practice /
_cRoger Tarling.
264 1 _aLondon ;
_aNew York :
_bRoutledge,
_c2009.
300 _ax, 210 pages :
_billustrations, plans ;
_c26 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aSocial research today
504 _aIncludes bibliographical references and index.
505 0 0 _g1.
_tStatistical modelling: An overview --
_g2.
_tResearch designs and data --
_g3.
_tStatistical preliminaries --
_g4.
_tMultiple regression for continuous response variables --
_g5.
_tLogistic regression for binary response variables --
_g6.
_tMultinomial logistic regression for multinomial response variables --
_g7.
_tLoglinear models --
_g8.
_tOrdinal logistic regression for ordered categorical response variables --
_g9.
_tMultilevel modelling --
_g10.
_tLatent variables and factor analysis --
_g11.
_tCausal modelling: simultaneous equation models --
_g12.
_tLongitudinal data analysis --
_g13.
_tEvent history models --
_gAppendix 1.
_tThe generalised linear model --
_gAppendix 2.
_tHandling tabular data.
520 _a"This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given. Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-linear models, multilevel models, latent variable models (factor analysis), path analysis and simultaneous equation models and models for longitudinal data and event histories. An accompanying website hosts the datasets and further exercises in order that the reader may practice developing statistical models."--Publisher's website.
588 _aMachine converted from AACR2 source record.
650 0 _aSocial sciences
_xResearch
_xStatistical methods.
650 0 _aSocial sciences
_xStatistical methods.
_9370520
830 0 _aSocial research today (Routledge (Firm)).
_9268124
907 _a.b11595103
_b20-03-18
_c27-10-15
998 _ab
_ac
_b20-03-18
_cm
_da
_feng
_genk
_h0
945 _a519.5 TAR
_g1
_iA469913B
_j0
_lcmain
_o-
_p$201.35
_q-
_r-
_s-
_t0
_u5
_v1
_w0
_x1
_y.i12945079
_z29-10-15
942 _cB
999 _c1202393
_d1202393