000 09572cam a2200457 i 4500
005 20221101232447.0
008 081209s2008 enka b 001 0 eng d
010 _a 2008026914
011 _aBIB MATCHES WORLDCAT
020 _a0521514088
_qhardback
020 _a9780521514088
_qhardback
035 _a(ATU)b11424813
035 _a(OCoLC)232536726
040 _aDLC
_beng
_erda
_cDLC
_dYDXCP
_dC#P
_dBWX
_dCDX
_dUKM
_dBTCTA
_dBWK
_dATU
050 0 0 _aHG6024.A3
_bJ67 2008
082 0 0 _a332.0151
_222
100 1 _aJoshi, M. S.
_q(Mark Suresh),
_d1969-
_eauthor.
_9253884
245 1 4 _aThe concepts and practice of mathematical finance /
_cM.S. Joshi.
250 _aSecond edition.
264 1 _aCambridge ;
_aNew York :
_bCambridge University Press,
_c2008.
300 _axviii, 539 pages :
_billustrations ;
_c26 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aMathematics, finance and risk
504 _aIncludes bibliographical references (pages 526-532) and index.
505 0 0 _g1.
_tRisk --
_g1.1
_tWhat is risk? --
_g1.2
_tMarket efficiency --
_g1.3
_tThe most important assets --
_g1.4
_tRisk diversification and hedging --
_g1.5
_tThe use of options --
_g1.6
_tClassifying market participants --
_g2.
_tPricing methodologies and arbitrage --
_g2.1
_tSome possible methodologies --
_g2.2
_tDelta hedging --
_g2.3
_tWhat is arbitrage? --
_g2.4
_tThe assumptions of mathematical finance --
_g2.5
_tAn example of arbitrage-free pricing --
_g2.6
_tThe time value of money --
_g2.7
_tMathematically defining arbitrage --
_g2.8
_tUsing arbitrage to bound option prices --
_g2.9
_tConclusion --
_g3.
_tTrees and option pricing --
_g3.1
_tA two-world universe --
_g3.2
_tA three-state model --
_g3.3
_tMultiple time steps --
_g3.4
_tMany time steps --
_g3.5
_tA normal model --
_g3.6
_tPutting interest rates in --
_g3.7
_tA log-normal model --
_g3.8
_tConsequences --
_g3.9
_tSummary --
_g4.
_tPracticalities --
_g4.1
_tIntroduction --
_g4.2
_tTrading volatility --
_g4.3
_tSmiles --
_g4.4
_tThe Greeks --
_g4.5
_tAlternative models --
_g4.6
_tTransaction costs --
_g5.
_tThe Ito calculus --
_g5.1
_tIntroduction --
_g5.2
_tBrownian motion --
_g5.3
_tQuadratic variation --
_g5.4
_tStochastic processes --
_g5.5
_tIto's lemma --
_g5.6
_tApplying Ito's lemma --
_g5.7
_tAn informal derivation of the Black-Scholes equation --
_g5.8
_tJustifying the derivation --
_g5.9
_tSolving the Black-Scholes equation --
_g5.10
_tDividend-paying assets --
_g6.
_tRisk neutrality and martingale measures --
_g6.1
_tPlan --
_g6.2
_tIntroduction --
_g6.3
_tThe existence of risk-neutral measures --
_g6.4
_tThe concept of information --
_g6.5
_tDiscrete martingale pricing --
_g6.6
_tContinuous martingales and filtrations --
_g6.7
_tIdentifying continuous martingales --
_g6.8
_tContinuous martingale pricing --
_g6.9
_tEquivalence to the PDE method --
_g6.10
_tHedging --
_g6.11
_tTime-dependent parameters --
_g6.12
_tCompleteness and uniqueness --
_g6.13
_tChanging numeraire --
_g6.14
_tDividend-paying assets --
_g6.15
_tWorking with the forward --
_g7.
_tThe practical pricing of a European option --
_g7.1
_tIntroduction --
_g7.2
_tAnalytic formulae --
_g7.3
_tTrees --
_g7.4
_tNumerical integration --
_g7.5
_tMonte Carlo --
_g7.6
_tPDE methods --
_g7.7
_tReplication --
_g8.
_tContinuous barrier options --
_g8.1
_tIntroduction --
_g8.2
_tThe PDE pricing of continuous barrier options --
_g8.3
_tExpectation pricing of continuous barrier options --
_g8.4
_tThe reflection principle --
_g8.5
_tGirsanov's theorem revisited --
_g8.6
_tJoint distribution --
_g8.7
_tPricing continuous barriers by expectation --
_g8.8
_tAmerican digital options --
_g9.
_tMulti-look exotic options --
_g9.1
_tIntroduction --
_g9.2
_tRisk-neutral pricing for path-dependent options --
_g9.3
_tWeak path dependence --
_g9.4
_tPath generation and dimensionality reduction --
_g9.5
_tMoment matching --
_g9.6
_tTrees, PDEs and Asian options --
_g9.7
_tPractical issues in pricing multi-look options --
_g9.8
_tGreeks of multi-look options --
_g10.
_tStatic replication --
_g10.1
_tIntroduction --
_g10.2
_tContinuous barrier options --
_g10.3
_tDiscrete barriers --
_g10.4
_tPath-dependent exotic options --
_g10.5
_tThe up-and-in put with barrier at strike --
_g10.6
_tPut-call symmetry --
_g10.7
_tConclusion and further reading --
_g11.
_tMultiple sources of risk --
_g11.1
_tIntroduction --
_g11.2
_tHigher-dimensional Brownian motions --
_g11.3
_tThe higher-dimensional Ito calculus --
_g11.4
_tThe higher-dimensional Girsanov theorem --
_g11.5
_tPractical pricing --
_g11.6
_tThe Margrabe option --
_g11.7
_tQuanto options --
_g11.8
_tHigher-dimensional trees --
_g12.
_tOptions with early exercise features --
_g12.1
_tIntroduction --
_g12.2
_tThe tree approach --
_g12.3
_tThe PDE approach to American options --
_g12.4
_tAmerican options by replication --
_g12.5
_tAmerican options by Monte Carlo --
_g12.6
_tUpper bounds by Monte Carlo --
_g13.
_tInterest rate derivatives --
_g13.1
_tIntroduction --
_g13.2
_tThe simplest instruments --
_g13.3
_tCaplets and swaptions --
_g13.4
_tCurves and more curves --
_g14.
_tThe pricing of exotic interest rate derivatives --
_g14.1
_tIntroduction --
_g14.2
_tDecomposing an instrument into forward rates --
_g14.3
_tComputing the drift of a forward rate --
_g14.4
_tThe instantaneous volatility curves --
_g14.5
_tThe instantaneous correlations between forward rates --
_g14.6
_tDoing the simulation --
_g14.7
_tRapid pricing of swaptions in a BGM model --
_g14.8
_tAutomatic calibration to co-terminal swaptions --
_g14.9
_tLower bounds for Bermudan swaptions --
_g14.10
_tUpper bounds for Bermudan swaptions --
_g14.11
_tFactor reduction and Bermudan swaptions --
_g14.12
_tInterest-rate smiles --
_g15.
_tIncomplete markets and jump-diffusion processes --
_g15.1
_tIntroduction --
_g15.2
_tModelling jumps with a tree --
_g15.3
_tModelling jumps in a continuous framework --
_g15.4
_tMarket incompleteness --
_g15.5
_tSuper- and sub-replication --
_g15.6
_tChoosing the measure and hedging exotic options --
_g15.7
_tMatching the market --
_g15.8
_tPricing exotic options using jump-diffusion models --
_g15.9
_tDoes the model matter? --
_g15.10
_tLog-type models --
_g16.
_tStochastic volatility --
_g16.1
_tIntroduction --
_g16.2
_tRisk-neutral pricing with stochastic-volatility models --
_g16.3
_tMonte Carlo and stochastic volatility --
_g16.4
_tHedging issues --
_g16.5
_tPDE pricing and transform methods --
_g16.6
_tStochastic volatility smiles --
_g16.7
_tPricing exotic options --
_g17.
_tVariance Gamma models --
_g17.1
_tThe Variance Gamma process --
_g17.2
_tPricing options with Variance Gamma models --
_g17.3
_tPricing exotic options with Variance Gamma models --
_g17.4
_tDeriving the properties --
_g18.
_tSmile dynamics and the pricing of exotic options --
_g18.1
_tIntroduction --
_g18.2
_tSmile dynamics in the market --
_g18.3
_tDynamics implied by models --
_g18.4
_tMatching the smile to the model --
_g18.5
_tHedging --
_g18.6
_tMatching the model to the product --
_gAppendix A
_tFinancial and mathematical jargon --
_gAppendix B
_tComputer projects --
_gB.1
_tIntroduction --
_gB.2
_tTwo important functions --
_gB.3
_tProject 1: Vanilla options in a Black-Scholes world --
_gB.4
_tProject 2: Vanilla Greeks --
_gB.5
_tProject 3: Hedging --
_gB.6
_tProject 4: Recombining trees --
_gB.7
_tProject 5: Exotic options by Monte Carlo --
_gB.8
_tProject 6: Using low-discrepancy numbers --
_gB.9
_tProject 7: Replication models for continuous barrier options --
_gB.10
_tProject 8: Multi-asset options --
_gB.11
_tProject 9: Simple interest-rate derivative pricing --
_gB.12
_tProject 10: LIBOR-in-arrears --
_gB.13
_tProject 11: BGM --
_gB.14
_tProject 12: Jump-diffusion models --
_gB.15
_tProject 13: Stochastic volatility --
_gB.16
_tProject 14: Variance Gamma --
_gAppendix C
_tElements of probability theory --
_gC.1
_tDefinitions --
_gC.2
_tExpectations and moments --
_gC.3
_tJoint density and distribution functions --
_gC.4
_tCovariances and correlations --
_gAppendix D
_tOrder notation --
_gD.1
_tBig O --
_gD.2
_tSmall o.
520 _a"An ideal introduction for those starting out as practitioners of mathematical finance, this book provides a clear understanding of the intuition behind derivatives pricing, how models are implemented, and how they are used and adapted in practice. Strengths and weaknesses of different models, e.g. Black-Scholes, stochastic volatility, jump-diffusion and variance gamma, are examined. Both the theory and the implementation of the industry-standard LIBOR market model are considered in detail. Each pricing problem is approached using multiple techniques including the well-known PDE and martingale approaches. This second edition contains many more worked examples and over 200 exercises with detailed solutions. Extensive appendices provide a guide to jargon, a recap of the elements of probability theory, and a collection of computer projects. The author brings to this book a blend of practical experience and rigorous mathematical background and supplies here the working knowledge needed to become a good quantitative analyst."--Publisher.
588 _aMachine converted from AACR2 source record.
650 0 _aDerivative securities
_xPrices
_xMathematical models.
650 0 _aOptions (Finance)
_xPrices
_xMathematical models.
650 0 _aInterest rates
_xMathematical models
_9718009
650 0 _aFinance
_xMathematical models.
_9370807
650 0 _aInvestments
_xMathematics
_9319550
650 0 _aRisk management
_xMathematical models
_9717451
830 0 _aMathematics, finance, and risk.
_91054152
907 _a.b11424813
_b28-09-17
_c27-10-15
942 _cB
945 _a332.0151 JOS
_g1
_iA433001B
_j0
_lcmain
_o-
_p$116.95
_q-
_r-
_s-
_t0
_u12
_v0
_w0
_x4
_y.i12871400
_z29-10-15
998 _a(2)b
_a(2)c
_b06-04-16
_cm
_da
_feng
_genk
_h4
999 _c1191929
_d1191929