000 | 03819cam a2200421 i 4500 | ||
---|---|---|---|
005 | 20211129162438.0 | ||
008 | 050518r19981996flua b 001 0 eng d | ||
010 | _a 98033429 | ||
011 | _aBIB MATCHES WORLDCAT | ||
020 | _a0412055511 | ||
020 | _a9780412055515 | ||
035 | _a(OCoLC)40218709 | ||
040 |
_aDLC _beng _erda _cDLC _dLVB _dYAM _dBAKER _dBTCTA _dYDXCP _dOCLCG _dDEBBG _dATU |
||
050 | 0 | 0 |
_aQA274.7 _b.M355 1998 |
082 | 0 | 0 |
_a519.233 _221 |
245 | 0 | 0 |
_aMarkov chain Monte Carlo in practice / _cedited by W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. |
264 | 1 |
_aBoca Raton, Fla. : _bChapman & Hall, _c1998. |
|
300 |
_axvii, 486 pages : _billustrations ; _c25 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
500 | _aPreviously published: London : Chapman & Hall, 1996. | ||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aIntroducing Markov chain Monte Carlo / W.R. Gilks, S. Richardson and D.J. Spiegelhalter -- Hepatitis B : a case study in MCMC methods / D.J. Spiegelhalter ... [et al.] -- Markov chain concepts related to sampling algorithms / G.O. Roberts -- Introduction to general state-space Markov chain theory / L. Tierney -- Full conditional distributions / W.R. Gilks -- Strategies for improving MCMC / W.R. Gilks and G.O. Roberts -- Implementing MCMC / A.E. Raftery and S.M. Lewis -- Inference and monitoring convergence / A. Gelman -- Model determination using sampling-based methods / A.E. Gelfand -- Hypothesis testing and model selection / A.E. Raftery -- Model checking and model improvement / A. Gelman and X.-L. Meng -- Stochastic search variable selection / E.I. George and R.E. McCulloch -- Bayesian model comparison via jump diffusions / D.B. Phillips and A.F.M. Smith -- Estimation and optimization of functions / C.J. Geyer -- Stochastic EM : method and application / J. Diebolt and E.H.S. Ip -- Generalized linear mixed models / D.G. Clayton -- Hierarchical longitudinal modeling / B.P. Carlin -- Medical monitoring / C. Berzuini -- MCMC for nonlinear hierarchical models / J.E. Bennett, A. Racine-Poon and J.C. Wakefield -- Bayesian mapping of disease / A. MolliƩ -- MCMC in image analysis / P.J. Green -- Measurement error / S. Richardson -- Gibbs sampling methods in genetics / D.C. Thomas and W.J. Gauderman -- Mixtures of distributions : inference and estimation / C.P. Robert -- An archaeological example : radiocarbon dating / C. Litton and C. Buck. | |
520 | _a"General state-space Markov chain theory has evolved to make it both more accessible and more powerful. Markov Chain Monte Carlo in Practice introduces MCMC methods and their applications while also providing some theoretical background. Considering the broad audience, the editors emphasize practice rather than theory and keep the technical content to a minimum. They offer step-by-step instructions for using the methods presented and show the importance of MCMC in real applications with examples ranging from the simple to the more complex in fields such as archaeology, astronomy, biostatistics, genetics, epidemiology, and image analysis."--Publisher description. | ||
588 | _aMachine converted from AACR2 source record. | ||
650 | 0 |
_aMarkov processes _9320449 |
|
650 | 0 |
_aMonte Carlo method. _9321027 |
|
650 | 0 |
_aMedical statistics _9320649 |
|
650 | 0 |
_aBiometry. _9314584 |
|
700 | 1 |
_aGilks, W. R. _q(Walter R.), _eeditor. _9256947 |
|
700 | 1 |
_aRichardson, S. _q(Sylvia), _eeditor. _9272648 |
|
700 | 1 |
_aSpiegelhalter, D. J., _eeditor. _9272544 |
|
907 |
_a.b10971713 _b26-03-18 _c27-10-15 |
||
942 | _cB | ||
945 |
_a519.233 MAR _g1 _iA412138B _j0 _lcmain _o- _p$97.85 _q- _r- _s- _t0 _u8 _v12 _w0 _x1 _y.i12190950 _z29-10-15 |
||
998 |
_ab _ac _b06-04-16 _cm _da _feng _gflu _h0 |
||
999 |
_c1156731 _d1156731 |