000 02981cam a22004574i 4500
005 20211103134948.0
008 001211s2000 enka b 001 0 eng d
010 _a 99088504
011 _aBIB MATCHES WORLDCAT
020 _a0521770416
_qhbk
020 _a9780521770415
_qhbk
020 _a0521779650
_qpbk
020 _a9780521779654
_qpbk
035 _a(ATU)b10933360
035 _a(DLC) 99088504
035 _a(OCoLC)42980231
040 _aDLC
_beng
_erda
_dATU
042 _apcc
050 0 0 _aHG106
_b.F73 2000
082 0 0 _a332.015118
_221
100 1 _aFranses, Philip Hans,
_d1963-
_eauthor.
_9396623
245 1 0 _aNonlinear time series models in empirical finance /
_cPhilip Hans Franses, Dick van Dijk.
264 1 _aCambridge, UK ;
_aNew York :
_bCambridge University Press,
_c2000.
300 _axvi, 280 pages :
_billustrations ;
_c26 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references (pages 254-271) and index.
505 0 0 _g1.
_tIntroduction --
_g2.
_tSome concepts in Time Series analysis --
_g3.
_tRegime-switching models for returns --
_g4.
_tRegime-Switching models for Volatility --
_g5.
_tArtificial neural networks for returns --
_g6.
_tConclusion.
520 _a"Although many of the models commonly used in empirical finance are linear, the nature of financial data suggests that non-linear models are more appropriate for forecasting and accurately describing returns and volatility. The enormous number of non-linear time series models appropriate for modeling and forecasting economic time series models makes choosing the best model for a particular application daunting. This classroom-tested advanced undergraduate and graduate textbook - the most up to-date and accessible guide available - provides a rigorous treatment of recently developed non-linear models, including regime-switching and artificial neural networks. The focus is on the potential applicability for describing and forecasting financial asset returns and their associated volatility. The models are analysed in detail and are not treated as 'black boxes'. Illustrated using a wide range of financial data, drawn from sources including the financial markets of Tokyo, London and Frankfurt."--Publisher description.
588 _aMachine converted from AACR2 source record.
650 0 _aFinance
_xMathematical models.
_9370807
650 0 _aTime-series analysis
_9325098
700 1 _aDijk, Dick van,
_eauthor.
_9263464
856 4 1 _3Sample text
_uhttp://www.loc.gov/catdir/samples/cam032/99088504.html
907 _a.b10933360
_b10-06-19
_c27-10-15
998 _a(3)b
_a(3)c
_b20-03-18
_cm
_da
_feng
_genk
_h0
945 _a332.015118 FRA
_g1
_iA263426B
_j0
_lcmain
_o-
_p$48.58
_q-
_r-
_s-
_t0
_u5
_v0
_w0
_x0
_y.i12160386
_z29-10-15
945 _a332.015118 FRA
_g1
_iA397004B
_j0
_lcmain
_o-
_p$56.86
_q-
_r-
_s-
_t0
_u2
_v0
_w0
_x0
_y.i12302946
_z29-10-15
942 _cB
999 _c1153937
_d1153937