000 11749cam a22004214i 4500
005 20211102083620.0
008 000717s2002 nyua b 001 0 eng d
010 _a 00058913
011 _aBIB MATCHES WORLDCAT
020 _a0195142497
020 _a9780195142495
035 _a(ATU)b10637023
035 _a(DLC) 00058913
035 _a(OCoLC)44627067
040 _aDLC
_beng
_erda
_dATU
042 _apcc
050 0 0 _aTJ216.
_bD417 2001
082 0 _a629.83
100 1 _aStefani, Raymond T.,
_eauthor.
_9231176
245 1 0 _aDesign of feedback control systems /
_cRaymond T. Stefani [and others].
250 _aFourth edition.
264 1 _aNew York :
_bOxford University Press,
_c2002.
300 _axvi, 848 pages :
_billustrations ;
_c24 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aThe Oxford series in electrical and computer engineering.
504 _aIncludes bibliographical references.
505 0 0 _g1.
_tContinuous-Time System Description --
_g1.1.
_tPreview --
_g1.2.
_tBasic Concepts --
_g1.2.1.
_tControl System Terminology --
_g1.2.2.
_tThe Feedback Concept --
_g1.3.
_tModeling --
_g1.4.
_tSystem Dynamics --
_g1.5.
_tElectrical Components --
_g1.5.1.
_tMesh Analysis --
_g1.5.2.
_tState Variables --
_g1.5.3.
_tNode Analysis --
_g1.5.4.
_tAnalyzing Operational Amplifier Circuits --
_g1.5.5.
_tOperational Amplifier Applications --
_g1.6.
_tTranslational Mechanical Components --
_g1.6.1.
_tFree Body Diagrams --
_g1.6.2.
_tState Variables --
_g1.7.
_tRotational Mechanical Components --
_g1.7.1.
_tFree Body Diagrams --
_g1.7.2.
_tAnalogies --
_g1.7.3.
_tGear Trains and Transformers --
_g1.8.
_tElectromechanical Components --
_g1.9.
_tAerodynamics --
_g1.9.1.
_tNomenclature --
_g1.9.2.
_tDynamics --
_g1.9.3.
_tLateral and Longitudinal Motion --
_g1.10.
_tThermal Systems --
_g1.11.
_tHydraulics --
_g1.12.
_tTransfer Functions and Stability --
_g1.12.1.
_tTransfer Functions --
_g1.12.2.
_tResponse Terms --
_g1.12.3.
_tMultiple Inputs and Outputs --
_g1.12.4.
_tStability --
_g1.13.
_tBlock Diagrams --
_g1.13.1.
_tBlock Diagram Elements --
_g1.13.2.
_tBlock Diagram Reductions --
_g1.13.3.
_tMultiple Inputs and Outputs --
_g1.14.
_tSignal Flow Graphs --
_g1.14.1.
_tComparison and Block Diagrams --
_g1.14.2.
_tMason's Rule --
_g1.15.
_tA Positioning Servo Example --
_g1.16.
_tController Model of a Thyroid Gland --
_g1.17.
_tStick-Slip Response of an Oil Well Drill --
_g1.18.
_tSummary --
_g2.
_tContinuous-Time System Response --
_g2.1.
_tPreview --
_g2.2.
_tResponse of First-Order Systems --
_g2.3.
_tResponse of Second-Order Systems --
_g2.3.1.
_tTime Response --
_g2.3.2.
_tOverdamped Response --
_g2.3.3.
_tCritically Damped Response --
_g2.3.4.
_tUnderdamped Response --
_g2.3.5.
_tUndamped Natural Frequency and Damping Ratio --
_g2.3.6.
_tRise Time, Overshoot and Settling Time --
_g2.4.
_tHigher-Order System Response --
_g2.5.
_tStability Testing --
_g2.5.1.
_tCoefficient Tests --
_g2.5.2.
_tRouth-Hurwitz Testing --
_g2.5.3.
_tSignificance of the Array Coefficients --
_g2.5.4.
_tLeft-Column Zeros --
_g2.5.5.
_tRow of Zeros --
_g2.5.6.
_tEliminating a Possible Odd Divisor --
_g2.5.7.
_tMultiple Roots --
_g2.6.
_tParameter Shifting --
_g2.6.1.
_tAdjustable Systems --
_g2.6.2.
_tKhartinov's Theorem --
_g2.7.
_tAn Insulin Delivery System --
_g2.8.
_tAnalysis of an Aircraft Wing --
_g2.9.
_tSummary --
_g3.
_tPerformance Specifications --
_g3.1.
_tPreview --
_g3.2.
_tAnalyzing Tracking Systems --
_g3.2.1.
_tImportance of Tracking Systems --
_g3.2.2.
_tNatural Response, Relative Stability and Damping --
_g3.3.
_tForced Response --
_g3.3.1.
_tSteady State Error --
_g3.3.2.
_tInitial and Final Values --
_g3.3.3.
_tSteady State Errors to Power-of-Time Inputs --
_g3.4.
_tPower-of-Time Error Performance --
_g3.4.1.
_tSystem Type Number --
_g3.4.2.
_tAchieving a Given Type Number --
_g3.4.3.
_tUnity Feedback Systems --
_g3.4.4.
_tUnity Feedback Error Coefficients --
_g3.5.
_tPerformance Indices and Optimal Systems --
_g3.6.
_tSystem Sensitivity --
_g3.6.1.
_tCalculating the Effects of Changes in Parameters --
_g3.6.2.
_tSensitivity Functions --
_g3.6.3.
_tSensitivity to Disturbance Signals --
_g3.7.
_tTime Domain Design --
_g3.7.1.
_tProcess Control --
_g3.7.2.
_tZiegler-Nichols Compensation --
_g3.7.3.
_tChien-Hrones-Reswick Compensation --
_g3.8.
_tAn Electric Rail Transportation System --
_g3.9.
_tPhase-Locked Loop for a CB Receiver --
_g3.10.
_tBionic Eye --
_g3.11.
_tSummary --
_g4.
_tRoot Locus Analysis --
_g4.1.
_tPreview --
_g4.2.
_tPole-Zero Plots --
_g4.2.1.
_tPoles and Zeros --
_g4.2.2.
_tGraphical Evaluation --
_g4.3.
_tRoot Locus for Feedback Systems --
_g4.3.1.
_tAngle Criterion --
_g4.3.2.
_tHigh and Low Gains --
_g4.3.3.
_tRoot Locus Properties --
_g4.4.
_tRoot Locus Construction --
_g4.5.
_tMore About Root Locus --
_g4.5.1.
_tRoot Locus Calibration --
_g4.5.2.
_tComputer-Aided Root Locus --
_g4.6.
_tRoot Locus for Other Systems --
_g4.6.1.
_tSystems with Other Forms --
_g4.6.2.
_tNegative Parameter Ranges --
_g4.6.3.
_tDelay Effects --
_g4.7.
_tDesign Concepts (Adding Poles and Zeros) --
_g4.8.
_tA Light-Source Tracking System --
_g4.9.
_tAn Artificial Limb --
_g4.10.
_tControl of a Flexible Spacecraft --
_g4.11.
_tBionic Eye --
_g4.12.
_tSummary --
_g5.
_tRoot Locus Design --
_g5.1.
_tPreview --
_g5.2.
_tShaping a Root Locus --
_g5.3.
_tAdding and Canceling Poles and Zeros --
_g5.3.1.
_tAdding a Pole or Zero --
_g5.3.2.
_tCanceling a Pole or Zero --
_g5.4.
_tSecond-Order Plant Models --
_g5.5.
_tAn Uncompensated Example --
_g5.6.
_tCascade Proportional Plus Integral (PI) Compensation --
_g5.6.1.
_tGeneral Approach to Compensator Design --
_g5.6.2.
_tCascade PI Compensation --
_g5.7.
_tCascade Lag Compensation --
_g5.8.
_tCascade Lead Compensation --
_g5.9.
_tCascade Lag-Lead Compensation --
_g5.10.
_tRate Feedback Compensation (PD) --
_g5.11.
_tProportional-Integral-Derivative Compensation (PID) --
_g5.12.
_tPole Placement --
_g5.12.1.
_tAlgebraic Compensation --
_g5.12.2.
_tSelecting the Transfer Function --
_g5.12.3.
_tIncorrect Plant Transmittance --
_g5.12.4.
_tRobust Algebraic Compensation --
_g5.12.5.
_tFixed-Structure Compensation --
_g5.13.
_tAn Unstable High-Performance Aircraft --
_g5.14.
_tControl of a Flexible Space Station --
_g5.15.
_tControl of a Solar Furnace --
_g5.16.
_tSummary --
505 0 0 _g6.
_tFrequency Response Analysis --
_g6.1.
_tPreview --
_g6.2.
_tFrequency Response --
_g6.2.1.
_tForced Sinusoidal Response --
_g6.2.2.
_tFrequency Response Measurement --
_g6.2.3.
_tResponse at Low and High Frequencies --
_g6.2.4.
_tGraphical Frequency Response Methods --
_g6.3.
_tBode Plots --
_g6.3.1.
_tAmplitude Plots in Decibels --
_g6.3.2.
_tReal Axis Roots --
_g6.3.3.
_tProducts of Transmittance Terms --
_g6.3.4.
_tComplex Roots --
_g6.4.
_tUsing Experimental Data --
_g6.4.1.
_tFinding Models --
_g6.4.2.
_tIrrational Transmittances --
_g6.5.
_tNyquist Methods --
_g6.5.1.
_tGenerating the Nyquist (Polar) Plot --
_g6.5.2.
_tInterpreting the Nyquist Plot --
_g6.6.
_tGain Margin --
_g6.7.
_tPhase Margin --
_g6.8.
_tRelation between Closed Loop and Open Loop Frequency Response --
_g6.9.
_tFrequency Response of a Flexible Spacecraft --
_g6.10.
_tSummary --
_g7.
_tFrequency Response Design --
_g7.1.
_tPreview --
_g7.2.
_tRelationship between Root Locus, Time Domain and Frequency Domain --
_g7.3.
_tCompensation Using Bode Plots --
_g7.4.
_tUncompensated System --
_g7.5.
_tCascade Proportional Plus Integral (PI) and Cascade Lag Compensation --
_g7.6.
_tCascade Lead Compensation --
_g7.7.
_tCascade Lag-Lead Compensation --
_g7.8.
_tRate Feedback Compensation (PD) --
_g7.9.
_tProportional-Integral-Derivative Compensation --
_g7.10.
_tAn Automobile Driver as a Compensator --
_g7.11.
_tSummary --
_g8.
_tState Space Analysis --
_g8.1.
_tPreview --
_g8.2.
_tState Space Representation --
_g8.2.1.
_tPhase-Variable Form --
_g8.2.2.
_tDual Phase-Variable Form --
_g8.2.3.
_tMultiple Inputs and Outputs --
_g8.2.4.
_tPhysical State Variables --
_g8.2.5.
_tTransfer Functions --
_g8.3.
_tState Transformations and Diagonalization --
_g8.3.1.
_tDiagonal Forms --
_g8.3.2.
_tDiagonalization Using Partial-Fraction Expansion --
_g8.3.3.
_tComplex Conjugate Characteristic Roots --
_g8.3.4.
_tRepeated Characteristic Roots --
_g8.4.
_tTime Response From State Equations --
_g8.4.1.
_tLaplace Transform Solution --
_g8.4.2.
_tTime-Domain Response of First-Order Systems --
_g8.4.3.
_tTime-Domain Response of Higher-Order Systems --
_g8.4.4.
_tSystem Response Computation --
_g8.5.
_tStability --
_g8.5.1.
_tAsymptotic Stability --
_g8.5.2.
_tBIBO Stability --
_g8.5.3.
_tInternal Stability --
_g8.6.
_tControllability and Observability --
_g8.6.1.
_tThe Controllability Matrix --
_g8.6.2.
_tThe Observability Matrix --
_g8.6.3.
_tControllability, Observability and Pole-Zero Cancellation --
_g8.6.4.
_tCauses of Uncontrollability --
_g8.7.
_tInverted Pendulum Problems --
_g8.8.
_tSummary --
_g9.
_tState Space Design --
_g9.1.
_tPreview --
_g9.2.
_tState Feedback and Pole Placement --
_g9.2.1.
_tStabilizability --
_g9.2.2.
_tChoosing Pole Locations --
_g9.2.3.
_tLimitations of State Feedback --
_g9.3.
_tTracking Problems --
_g9.3.1.
_tIntegral Control --
_g9.4.
_tObserver Design --
_g9.4.1.
_tControl Using Observers --
_g9.4.2.
_tSeparation Property --
_g9.4.3.
_tObserver Transfer Function --
_g9.5.
_tReduced-Order Observer Design --
_g9.5.1.
_tSeparation Property --
_g9.5.2.
_tReduced-Order Observer Transfer Function --
_g9.6.
_tA Magnetic Levitation System --
_g9.7.
_tSummary --
_g10.
_tAdvanced State Space Methods --
_g10.1.
_tPreview --
_g10.2.
_tThe Linear Quadratic Regulator Problem --
_g10.2.1.
_tProperties of the LQR Design --
_g10.2.2.
_tReturn Difference Inequality --
_g10.2.3.
_tOptimal Root Locus --
_g10.3.
_tOptimal Observers--The Kalman Filter --
_g10.4.
_tThe Linear Quadratic Gaussian (LQG) Problem --
_g10.4.1.
_tCritique of LGQ --
_g10.5.
_tRobustness --
_g10.5.1.
_tFeedback Properties --
_g10.5.2.
_tUncertainty Modeling --
_g10.5.3.
_tRobust Stability --
_g10.6.
_tLoop Transfer Recovery (LTR) --
_g10.7.
_tH¥ --
_g10.7.1.
_tA Brief History --
_g10.7.2.
_tSome Preliminaries --
_g10.7.3.
_tH¥ --
_g10.7.4.
_tWeights in H¥ --
_g10.8.
_tSummary --
_g11.
_tDigital Control --
_g11.1.
_tPreview --
_g11.2.
_tComputer Processing --
_g11.2.1.
_tComputer History and Trends --
_g11.3.
_tA /D and D /A Conversion --
_g11.3.1.
_tAnalog-to-Digital Conversion --
_g11.3.2.
_tSample and Hold --
_g11.3.3.
_tDigital-to-Analog Conversion --
_g11.4.
_tDiscrete-Time Signals --
_g11.4.1.
_tRepresenting Sequences --
_g11.4.2.
_tZ-Transformation and Properties --
_g11.4.3.
_tInverse z-Transform --
_g11.5.
_tSampling --
_g11.6.
_tReconstruction of Signals from Samples --
_g11.6.1.
_tRepresenting Sampled Signals with Impulses --
_g11.6.2.
_tRelation between the z-Transform and the Laplace Transform --
_g11.6.3.
_tThe Sampling Theorem --
_g11.7.
_tDiscrete-Time Systems --
_g11.7.1.
_tDifference Equations Response --
_g11.7.2.
_tZ-Transfer Functions --
_g11.7.3.
_tBlock Diagrams and Signal Flow Graphs --
_g11.7.4.
_tStability and the Bilinear Transformation --
_g11.7.5.
_tComputer Software --
_g11.8.
_tState Variable Description of Discrete-Time Systems --
_g11.8.1.
_tSimulation Diagrams and Equations --
_g11.8.2.
_tResponse and Stability --
_g11.8.3.
_tControllability and Observability --
_g11.9.
_tDigitizing Control Systems --
_g11.9.1.
_tStep-Invariant Approximation --
_g11.9.2.
_tZ-Transfer Functions of Systems with Analog Measurements --
_g11.9.3.
_tA Design Example --
_g11.10.
_tDirect Digital Design --
_g11.10.1.
_tSteady State Response --
_g11.10.2.
_tDeadbeat Systems --
_g11.10.3.
_tA Design Example --
_g11.11.
_tSummary --
_gAppendix A.
_tMatrix Algebra --
_gAppendix B.
_tLaplace Transform.
588 _aMachine converted from AACR2 source record.
650 0 _aFeedback control systems
_9317797
830 0 _aOxford series in electrical and computer engineering.
_9240462
907 _a.b10637023
_b20-07-21
_c27-10-15
998 _a(2)b
_a(2)c
_b06-04-16
_cm
_da
_feng
_gnyu
_h0
945 _a629.83 DES
_g1
_iA284471B
_j0
_lcmain
_o-
_p$98.19
_q-
_r-
_s-
_t0
_u13
_v6
_w0
_x1
_y.i11494773
_z28-10-15
942 _cB
999 _c1134420
_d1134420