TY - BOOK AU - Del Re,Luigi TI - Automotive model predictive control: models, methods and applications T2 - Lecture notes in control and information sciences, SN - 1849960704 AV - TJ212.2 .A88 2010 U1 - 629.83 22 PY - 2010/// CY - Berlin PB - Springer KW - Automatic control KW - Congresses KW - Control theory N1 - Includes bibliographical references and index; 1; Chances and Challenges in Automotive Predictive Control; Luigi del Re, Peter Ortner, Daniel Alberer --; 1.1; Introduction: The Rationale --; 1.2; Alternatives for Modeling --; 1.2.1; First Principles Models --; 1.2.2; Data-only Models --; 1.2.3; Advanced Use of Data --; 1.3; Alternatives for Optimization --; 1.3.1; Basic Algorithmic Approaches --; 1.3.2; Coping with Nonlinearity --; 1.4; Chances: State and Outlook --; 1.5; Conclusions --; Part I; Models --; 2; On Board NOx Prediction in Diesel Engines: A Physical Approach; Jean Arregle, J. Javier Lopez, Carlos Guardiola, B Christelle Monin --; 2.1; Introduction --; 2.2; Main Physical /Chemical Mechanisms of NOx Formation /Destruction --; 2.2.1; NOx Re-burning --; 2.2.2; NOx Formation in LTC Conditions --; 2.3; Mechanisms and Model Sensitivity --; 2.3.1; Structure of Physically-based NOx Models --; 2.3.2; Flame Temperature Determination --; 2.4; Input Parameters Accuracy --; 2.4.1; Intake Air Mass Flow Rate Accuracy --; 2.4.2; Air + EGR Mixture Temperature and Oxygen Fraction --; 2.5; Conclusions --; 3; Mean Value Engine Models Applied to Control System Design and Validation; Pierre Olivier Calendini, Stefan Breuer --; 3.1; State of the Art Mean Value Engine Model --; 3.2; System Model Structure as a Response to the Requirements --; 3.2.1; Bond Graph Applied to Mean Value Engine Models --; 3.2.2; Naturally Aspirated and Turbocharged Engine in Bond Graph Structure --; 3.3; Basic Blocs for Building Mean Value Models --; 3.3.1; The Volume Bloc --; 3.3.2; The Gas Exchange Bloc --; 3.3.3; Heat Exchange Models --; 3.3.4; Combustion Model Possibilities --; 3.3.5; Environment Model --; 3.4; Application Example: Choice of an Air Loop Control Strategy --; 3.4.1; Implementation of the Robustness Simulation --; 3.4.2; Results of the Robustness Simulations --; 3.5; Conclusions --; 4; Physical Modeling of Turbocharged Engines and Parameter Identification; Lars Eriksson, Johan Wahlstrom, Markus Klein --; 4.1; Introduction --; 4.2; MVEM Modeling --; 4.2.1; Library Development --; 4.2.2; Building Blocks: Component Models --; 4.2.3; The Engine Cylinders: Flow, Temperature, and Torque --; 4.2.4; Implementation Examples --; 4.3; Modeling of a Diesel Engine with EGR /VGT --; 4.3.1; Experimental Data --; 4.3.2; Minimum Number of States --; 4.3.3; Model Extensions --; 4.4; Gray-Box Models and Identification --; 4.5; Conclusions --; 5; Dynamic Engine Emission Models; Markus Hirsch, Klaus Oppenauer, Luigi del Re --; 5.1; Introduction --; 5.2; Data-based Model Identification --; 5.3; Mean Value Emission Model --; 5.3.1; Input Selection --; 5.3.2; Model Structure --; 5.3.3; Parameter Identification --; 5.3.4; Regressor Selection --; 5.3.5; Realization and Results --; 5.4; Crank Angle Based Emission Model --; 5.4.1; Workflow --; 5.4.2; 1-zone Process Calculation --; 5.4.3; 2-zone Model --; 5.4.4; Emission Models --; 5.4.5; Model Development and Verification --; 5.5; Data for Identification: Input Design --; 5.6; Limitations --; 5.7; Summary --; 6; Modeling and Model-based Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics; Rolf Johansson, Per Tunestal, Anders Widd --; 6.1; Introduction --; 6.2; HCCI Modeling --; 6.2.1; Fuel Modeling --; 6.2.2; Auto-ignition Modeling --; 6.2.3; Thermal Modeling and Auto-ignition --; 6.3; Experiments --; 6.3.1; Model Predictive Control --; 6.4; Conclusions --; Part II; Methods --; 7; An Overview of Nonlinear Model Predictive Control; Lalo Magni, Riccardo Scattolini --; 7.1; Introduction --; 7.2; Problem Formulation and State-feedback NMPC Control Law --; 7.2.1; Feasibility and Stability in Nominal Conditions --; 7.2.2; The Robustness Problem --; 7.3; Output Feedback and Tracking --; 7.3.1; Output Feedback --; 7.3.2; Tracking --; 7.4; Implementation Problems and Alternative Approaches --; 8; Optimal Control Using Pontryagin's Maximum Principle and Dynamic Programming; Bart Saerens, Moritz Diehl, Eric Van den Bulck --; 8.1; Introduction --; 8.2; Optimal Control --; 8.2.1; Pontryagin's Maximum Principle --; 8.2.2; Dynamic Programming --; 8.3; Vehicle and Powertrain Model --; 8.3.1; Vehicle and Driveline Model --; 8.3.2; Engine Model --; 8.4; Minimum-fuel Acceleration with the Maximum Principle --; 8.5; Minimum-fuel Acceleration with Dynamic Programming --; 8.6; Discussion of the Results --; 8.6.1; Comparison between the Maximum Principle and Dynamic Programming --; 8.6.2; Comparison with Other Research --; 8.7; Conclusions --; 9; On the Use of Parameterized NMPC in Real-time Automotive Control (Mazen Alamir, Andre Murilo, Rachid Amari, Paolina Tona, Richard Furhapter, Peter Ortner( --; 9.1; Introduction --; 9.2; The Parameterized NMPC: Definitions and Notation --; 9.3; Example 1: Diesel Engine Air Path Control --; 9.4; Example 2: Automated Manual Transmission Control --; 9.5; Conclusion --; Part III; Applications --; 10; An Application of MPC Starting Automotive Spark Ignition Engine in SICE Benchmark Problem; Akira Ohata, Masaki Yamakita --; 10.1; Introduction --; 10.2; Control Design Strategy in MBD --; 10.3; Benchmark Problem --; 10.4; Application of MPC --; 10.5; Summary --; 11; Model Predictive Control of Partially Premixed Combustion; Per Tunestal, Magnus Lewander --; 11.1; Introduction --; 11.2; Experimental Setup --; 11.3; PPC Definition --; 11.4; Control --; 11.4.1; Control Design --; 11.5; Results --; 11.5.1; Response to EGR Disturbance --; 11.5.2; Response to Load Changes --; 11.5.3; Response to Speed Changes --; 11.6; Discussion --; 11.7; Conclusions --; 12; Model Predictive Powertrain Control: An Application to Idle Speed Regulation; Stefano Di Cairano, Diana Yanakiev, Alberto Bemporad, Ilya Kolmanovsky, Davor Hrovat --; 12.1; Introduction --; 12.2; Engine Model for Idle Speed Control --; 12.3; Control-oriented Model and Controller Design --; 12.4; Controller Synthesis and Refinement --; 12.4.1; Feedback Law Synthesis and Functional Assessment --; 12.4.2; Prediction Model Refinement --; 12.5; Experimental Validation --; 12.6; Conclusions --; 13; On Low Complexity Predictive Approaches to Control of Autonomous Vehicles; Paolo Falcone, Francesco Borrelli, Eric H. Tseng, Davor Hrovat --; 13.1; Introduction to Autonomous Guidance Systems --; 13.2; Vehicle Modeling --; 13.3; Low Complexity Predictive Path Following --; 13.3.1; Two Levels Autonomous Path Following --; 13.3.2; Single Level Autonomous Path Following --; 13.4; Results --; 13.5; Conclusions --; 14; Toward a Systematic Design for Turbocharged Engine Control; Greg Stewart, Francesco Borrelli, Jaroslav Pekar, David Germann, Daniel Pachner, Dejan Kihas --; 14.1; Introduction --; 14.2; Engine Control Requirements --; 14.2.1; Steady-state Engine Calibration --; 14.2.2; Control Functional Development --; 14.2.3; Functional Testing --; 14.2.4; Software Development --; 14.2.5; Integration --; 14.2.6; Calibration --; 14.2.7; Certification --; 14.2.8; Release and Post-release Support --; 14.2.9; Iteration Loops --; 14.3; Modeling and Control for Turbocharged Engines --; 14.3.1; Modeling --; 14.4; Model Predictive Control and Computational Complexity --; 14.4.1; Explicit Predictive Control --; 14.4.2; On the Complexity of Explicit MPC Control Laws --; 14.5; Summary and Conclusions --; 15; An Integrated LTV-MPC Lateral Vehicle Dynamics Control: Simulation Results; Giovanni Palmieri, Osvaldo Barbarisi, Stefano Scala, Luigi Glielmo --; 15.1; Introduction --; 15.2; Full Vehicle Model --; 15.3; Lateral Vehicle Dynamic Control Strategy --; 15.3.1; Reference Signals --; 15.3.2; Estimation of Tire Variables --; 15.3.3; Supervisor --; 15.3.4; Model Predictive Control --; 15.3.5; An Alternative 2PI Regulator --; 15.4; A Reduced Model for Slip Control --; 15.5; A Slip Control Strategy --; 15.5.1; Feedback Action --; 15.6; Simulation Results --; 15.7; Conclusions --; 16; MIMO Model Predictive Control for Integral Gas Engines; Jakob Angeby, Matthias Huschenbett, Daniel Alberer --; 16.1; Introduction --; 16.2; System Description --; 16.3; Problem Statement --; 16.4; Model Predictive Control --; 16.5; Implementation --; 16.5.1; Objective Function --; 16.5.2; Model Derivation --; 16.6; Model Extensions --; 16.7; Real-time MPC --; 16.8; Results --; 16.9; Conclusions --; 17; A Model Predictive Control Approach to Design a Parameterized Adaptive Cruise Control; Gerrit J.L. Naus, Jeroen Ploeg, M.J.G. Van de Molengraft, W.P.M.H. Heemels, Maarten Steinbuch --; 17.1; Introduction --; 17.2; Problem Formulation --; 17.2.1; Quantification Measures --; 17.2.2; Parameterization --; 17.3; Model Predictive Control Problem Setup --; 17.3.1; Modeling --; 17.3.2; Control Objectives and Constraints --; 17.3.3; Control Problem / Cost Criterion Formulation --; 17.4; Controller Design --; 17.4.1; Parameterization --; 17.4.2; Implementation Issues --; 17.4.3; Results --; 17.5; Conclusions and Future Work ER -