TY - BOOK AU - Stefani,Raymond T. TI - Design of feedback control systems T2 - The Oxford series in electrical and computer engineering SN - 0195142497 AV - TJ216. D417 2001 U1 - 629.83 PY - 2002/// CY - New York PB - Oxford University Press KW - Feedback control systems N1 - Includes bibliographical references; 1; Continuous-Time System Description --; 1.1; Preview --; 1.2; Basic Concepts --; 1.2.1; Control System Terminology --; 1.2.2; The Feedback Concept --; 1.3; Modeling --; 1.4; System Dynamics --; 1.5; Electrical Components --; 1.5.1; Mesh Analysis --; 1.5.2; State Variables --; 1.5.3; Node Analysis --; 1.5.4; Analyzing Operational Amplifier Circuits --; 1.5.5; Operational Amplifier Applications --; 1.6; Translational Mechanical Components --; 1.6.1; Free Body Diagrams --; 1.6.2; State Variables --; 1.7; Rotational Mechanical Components --; 1.7.1; Free Body Diagrams --; 1.7.2; Analogies --; 1.7.3; Gear Trains and Transformers --; 1.8; Electromechanical Components --; 1.9; Aerodynamics --; 1.9.1; Nomenclature --; 1.9.2; Dynamics --; 1.9.3; Lateral and Longitudinal Motion --; 1.10; Thermal Systems --; 1.11; Hydraulics --; 1.12; Transfer Functions and Stability --; 1.12.1; Transfer Functions --; 1.12.2; Response Terms --; 1.12.3; Multiple Inputs and Outputs --; 1.12.4; Stability --; 1.13; Block Diagrams --; 1.13.1; Block Diagram Elements --; 1.13.2; Block Diagram Reductions --; 1.13.3; Multiple Inputs and Outputs --; 1.14; Signal Flow Graphs --; 1.14.1; Comparison and Block Diagrams --; 1.14.2; Mason's Rule --; 1.15; A Positioning Servo Example --; 1.16; Controller Model of a Thyroid Gland --; 1.17; Stick-Slip Response of an Oil Well Drill --; 1.18; Summary --; 2; Continuous-Time System Response --; 2.1; Preview --; 2.2; Response of First-Order Systems --; 2.3; Response of Second-Order Systems --; 2.3.1; Time Response --; 2.3.2; Overdamped Response --; 2.3.3; Critically Damped Response --; 2.3.4; Underdamped Response --; 2.3.5; Undamped Natural Frequency and Damping Ratio --; 2.3.6; Rise Time, Overshoot and Settling Time --; 2.4; Higher-Order System Response --; 2.5; Stability Testing --; 2.5.1; Coefficient Tests --; 2.5.2; Routh-Hurwitz Testing --; 2.5.3; Significance of the Array Coefficients --; 2.5.4; Left-Column Zeros --; 2.5.5; Row of Zeros --; 2.5.6; Eliminating a Possible Odd Divisor --; 2.5.7; Multiple Roots --; 2.6; Parameter Shifting --; 2.6.1; Adjustable Systems --; 2.6.2; Khartinov's Theorem --; 2.7; An Insulin Delivery System --; 2.8; Analysis of an Aircraft Wing --; 2.9; Summary --; 3; Performance Specifications --; 3.1; Preview --; 3.2; Analyzing Tracking Systems --; 3.2.1; Importance of Tracking Systems --; 3.2.2; Natural Response, Relative Stability and Damping --; 3.3; Forced Response --; 3.3.1; Steady State Error --; 3.3.2; Initial and Final Values --; 3.3.3; Steady State Errors to Power-of-Time Inputs --; 3.4; Power-of-Time Error Performance --; 3.4.1; System Type Number --; 3.4.2; Achieving a Given Type Number --; 3.4.3; Unity Feedback Systems --; 3.4.4; Unity Feedback Error Coefficients --; 3.5; Performance Indices and Optimal Systems --; 3.6; System Sensitivity --; 3.6.1; Calculating the Effects of Changes in Parameters --; 3.6.2; Sensitivity Functions --; 3.6.3; Sensitivity to Disturbance Signals --; 3.7; Time Domain Design --; 3.7.1; Process Control --; 3.7.2; Ziegler-Nichols Compensation --; 3.7.3; Chien-Hrones-Reswick Compensation --; 3.8; An Electric Rail Transportation System --; 3.9; Phase-Locked Loop for a CB Receiver --; 3.10; Bionic Eye --; 3.11; Summary --; 4; Root Locus Analysis --; 4.1; Preview --; 4.2; Pole-Zero Plots --; 4.2.1; Poles and Zeros --; 4.2.2; Graphical Evaluation --; 4.3; Root Locus for Feedback Systems --; 4.3.1; Angle Criterion --; 4.3.2; High and Low Gains --; 4.3.3; Root Locus Properties --; 4.4; Root Locus Construction --; 4.5; More About Root Locus --; 4.5.1; Root Locus Calibration --; 4.5.2; Computer-Aided Root Locus --; 4.6; Root Locus for Other Systems --; 4.6.1; Systems with Other Forms --; 4.6.2; Negative Parameter Ranges --; 4.6.3; Delay Effects --; 4.7; Design Concepts (Adding Poles and Zeros) --; 4.8; A Light-Source Tracking System --; 4.9; An Artificial Limb --; 4.10; Control of a Flexible Spacecraft --; 4.11; Bionic Eye --; 4.12; Summary --; 5; Root Locus Design --; 5.1; Preview --; 5.2; Shaping a Root Locus --; 5.3; Adding and Canceling Poles and Zeros --; 5.3.1; Adding a Pole or Zero --; 5.3.2; Canceling a Pole or Zero --; 5.4; Second-Order Plant Models --; 5.5; An Uncompensated Example --; 5.6; Cascade Proportional Plus Integral (PI) Compensation --; 5.6.1; General Approach to Compensator Design --; 5.6.2; Cascade PI Compensation --; 5.7; Cascade Lag Compensation --; 5.8; Cascade Lead Compensation --; 5.9; Cascade Lag-Lead Compensation --; 5.10; Rate Feedback Compensation (PD) --; 5.11; Proportional-Integral-Derivative Compensation (PID) --; 5.12; Pole Placement --; 5.12.1; Algebraic Compensation --; 5.12.2; Selecting the Transfer Function --; 5.12.3; Incorrect Plant Transmittance --; 5.12.4; Robust Algebraic Compensation --; 5.12.5; Fixed-Structure Compensation --; 5.13; An Unstable High-Performance Aircraft --; 5.14; Control of a Flexible Space Station --; 5.15; Control of a Solar Furnace --; 5.16; Summary --; 6; Frequency Response Analysis --; 6.1; Preview --; 6.2; Frequency Response --; 6.2.1; Forced Sinusoidal Response --; 6.2.2; Frequency Response Measurement --; 6.2.3; Response at Low and High Frequencies --; 6.2.4; Graphical Frequency Response Methods --; 6.3; Bode Plots --; 6.3.1; Amplitude Plots in Decibels --; 6.3.2; Real Axis Roots --; 6.3.3; Products of Transmittance Terms --; 6.3.4; Complex Roots --; 6.4; Using Experimental Data --; 6.4.1; Finding Models --; 6.4.2; Irrational Transmittances --; 6.5; Nyquist Methods --; 6.5.1; Generating the Nyquist (Polar) Plot --; 6.5.2; Interpreting the Nyquist Plot --; 6.6; Gain Margin --; 6.7; Phase Margin --; 6.8; Relation between Closed Loop and Open Loop Frequency Response --; 6.9; Frequency Response of a Flexible Spacecraft --; 6.10; Summary --; 7; Frequency Response Design --; 7.1; Preview --; 7.2; Relationship between Root Locus, Time Domain and Frequency Domain --; 7.3; Compensation Using Bode Plots --; 7.4; Uncompensated System --; 7.5; Cascade Proportional Plus Integral (PI) and Cascade Lag Compensation --; 7.6; Cascade Lead Compensation --; 7.7; Cascade Lag-Lead Compensation --; 7.8; Rate Feedback Compensation (PD) --; 7.9; Proportional-Integral-Derivative Compensation --; 7.10; An Automobile Driver as a Compensator --; 7.11; Summary --; 8; State Space Analysis --; 8.1; Preview --; 8.2; State Space Representation --; 8.2.1; Phase-Variable Form --; 8.2.2; Dual Phase-Variable Form --; 8.2.3; Multiple Inputs and Outputs --; 8.2.4; Physical State Variables --; 8.2.5; Transfer Functions --; 8.3; State Transformations and Diagonalization --; 8.3.1; Diagonal Forms --; 8.3.2; Diagonalization Using Partial-Fraction Expansion --; 8.3.3; Complex Conjugate Characteristic Roots --; 8.3.4; Repeated Characteristic Roots --; 8.4; Time Response From State Equations --; 8.4.1; Laplace Transform Solution --; 8.4.2; Time-Domain Response of First-Order Systems --; 8.4.3; Time-Domain Response of Higher-Order Systems --; 8.4.4; System Response Computation --; 8.5; Stability --; 8.5.1; Asymptotic Stability --; 8.5.2; BIBO Stability --; 8.5.3; Internal Stability --; 8.6; Controllability and Observability --; 8.6.1; The Controllability Matrix --; 8.6.2; The Observability Matrix --; 8.6.3; Controllability, Observability and Pole-Zero Cancellation --; 8.6.4; Causes of Uncontrollability --; 8.7; Inverted Pendulum Problems --; 8.8; Summary --; 9; State Space Design --; 9.1; Preview --; 9.2; State Feedback and Pole Placement --; 9.2.1; Stabilizability --; 9.2.2; Choosing Pole Locations --; 9.2.3; Limitations of State Feedback --; 9.3; Tracking Problems --; 9.3.1; Integral Control --; 9.4; Observer Design --; 9.4.1; Control Using Observers --; 9.4.2; Separation Property --; 9.4.3; Observer Transfer Function --; 9.5; Reduced-Order Observer Design --; 9.5.1; Separation Property --; 9.5.2; Reduced-Order Observer Transfer Function --; 9.6; A Magnetic Levitation System --; 9.7; Summary --; 10; Advanced State Space Methods --; 10.1; Preview --; 10.2; The Linear Quadratic Regulator Problem --; 10.2.1; Properties of the LQR Design --; 10.2.2; Return Difference Inequality --; 10.2.3; Optimal Root Locus --; 10.3; Optimal Observers--The Kalman Filter --; 10.4; The Linear Quadratic Gaussian (LQG) Problem --; 10.4.1; Critique of LGQ --; 10.5; Robustness --; 10.5.1; Feedback Properties --; 10.5.2; Uncertainty Modeling --; 10.5.3; Robust Stability --; 10.6; Loop Transfer Recovery (LTR) --; 10.7; H¥ --; 10.7.1; A Brief History --; 10.7.2; Some Preliminaries --; 10.7.3; H¥ --; 10.7.4; Weights in H¥ --; 10.8; Summary --; 11; Digital Control --; 11.1; Preview --; 11.2; Computer Processing --; 11.2.1; Computer History and Trends --; 11.3; A /D and D /A Conversion --; 11.3.1; Analog-to-Digital Conversion --; 11.3.2; Sample and Hold --; 11.3.3; Digital-to-Analog Conversion --; 11.4; Discrete-Time Signals --; 11.4.1; Representing Sequences --; 11.4.2; Z-Transformation and Properties --; 11.4.3; Inverse z-Transform --; 11.5; Sampling --; 11.6; Reconstruction of Signals from Samples --; 11.6.1; Representing Sampled Signals with Impulses --; 11.6.2; Relation between the z-Transform and the Laplace Transform --; 11.6.3; The Sampling Theorem --; 11.7; Discrete-Time Systems --; 11.7.1; Difference Equations Response --; 11.7.2; Z-Transfer Functions --; 11.7.3; Block Diagrams and Signal Flow Graphs --; 11.7.4; Stability and the Bilinear Transformation --; 11.7.5; Computer Software --; 11.8; State Variable Description of Discrete-Time Systems --; 11.8.1; Simulation Diagrams and Equations --; 11.8.2; Response and Stability --; 11.8.3; Controllability and Observability --; 11.9; Digitizing Control Systems --; 11.9.1; Step-Invariant Approximation --; 11.9.2; Z-Transfer Functions of Systems with Analog Measurements --; 11.9.3; A Design Example --; 11.10; Direct Digital Design --; 11.10.1; Steady State Response --; 11.10.2; Deadbeat Systems --; 11.10.3; A Design Example --; 11.11; Summary --; Appendix A; Matrix Algebra --; Appendix B; Laplace Transform ER -