Image from Coce

Vibration and structural acoustics analysis : current research and related technologies / C.M.A. Vasques, J. Dias Rodrigues, editors.

Contributor(s): Material type: TextTextPublisher: Dordrecht ; New York : Springer, [2011]Copyright date: ©2011Description: xxx, 327 pages : illustrations (some colour) ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9400717024
  • 9789400717022
Subject(s): DDC classification:
  • 624.17 23
Contents:
1. The Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method -- 2. Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments -- 3. Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration -- 4. A Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom -- 5. Modeling and Testing of a Concrete Pumping Group Control System -- 6. Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam -- 7. An Efficient Sound Source Localization Technique via Boundary Element Method -- 8. Dispersion Analysis of Acoustic Circumferential Waves Using Time-Frequency Representations -- 9. Viscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades -- 10. Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches -- 11. Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics -- --
1. The Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method / L.M.J.S. Dinis, R.M. Natal Jorge, and J. Belinha -- 1.1. Introduction -- 1.2. Overviewof the Stateof the Art -- 1.3. The Natural Neighbour Radial Point Interpolation Method -- 1.4. Dynamic Discrete System of Equations -- 1.5. Dynamic Examples -- 1.5.1. Cantilever Beam -- 1.5.2. Variable Cross Section Beams -- 1.5.3. Shear-Wall -- 1.5.4. Square Plates -- 1.5.5. Shallow Shell -- 1.6. Prospects for the Future -- 1.7. Summary -- 1.8. Selected Bibliography -- 2. Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments / M.A. Pérez Martínez, P. Poletti, and L. Gil Espert -- 2.1. Introduction -- 2.2. Overviewof the Stateof the Art -- 2.3. Orthotropic Nature of Wood Properties -- 2.4. Influence of Moisture Changes on Wood -- 2.5. Experimental Modal Analysis of Wooden Specimens -- 2.6. Numerical Model of Wooden Plate -- 2.6.1. The Finite Element Method -- 2.6.2. Free Vibrations of Kirchhoff Plates -- 2.6.3. Perturbationof the Equationof Motion -- 2.7. Elastic Constants from Plate Vibration Measurements -- 2.8. Results -- 2.9. Concluding Remarks -- 2.10. Prospects for the Future -- 2.11. Summary -- 3. Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration / V.-H. Vu, M. Thomas, A.A. Lakis, and L. Marcouiller -- 3.1. Introduction -- 3.2. Overviewof the Stateof the Art -- 3.2.1. Operational Modal Analysis -- 3.2.2. Non-stationary Vibration -- 3.2.3. Fluid-Structure Interaction -- 3.2.4. Development of a New Method for Investigating Modal Parameters of Non-stationary Systems by Operational Modal Analysis -- 3.3. Vector Autoregressive (VAR)Modeling -- 3.4. The Short Time Autoregressive (STAR) Method -- 3.4.1. Order Updating and a Criterion for Minimum Model Order Selection -- 3.4.2. Working Procedure -- 3.5. Numerical Simulation on a Mechanical System -- 3.5.1. Discussion on Data Block Length -- 3.5.2. Simulation on Mechanical System with Time-Dependent Parameters -- 3.6. Experimental Application on an Emerging Steel Plate -- 3.7. Prospects for the Future -- 3.8. Summary -- 3.9. Selected Bibliography -- 4. A Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom / G. Cazzulani, M. Ferrari, F. Resta, and F. Ripamonti -- 4.1. Introduction -- 4.2. Overviewof the Stateof the Art -- 4.3. The System -- 4.3.1. Test Rig -- 4.3.2. Numerical Model -- 4.4. Active Modal Control -- 4.4.1. Independent Modal Control -- 4.4.2. The Modal Observer -- 4.4.3. Numerical Analysis of Modal Control -- 4.5. Feed-Forward Control -- 4.5.1. The Feed-Forward Control Logic -- 4.5.2. Numerical Analysis of the Feed-Forward Control -- 4.6. Experimental Testing -- 4.7. Prospects for the Future -- 4.8. Summary -- 4.9. Selected Bibliography -- 5. Modeling and Testing of a Concrete Pumping Group Control System / C. Ghielmetti, H. Giberti, and F. Resta -- 5.1. Introduction -- 5.2. Overviewof the Stateof the Art -- 5.3. Descriptionof the Entire System -- 5.4. Experimental Tests -- 5.5. Mathematical Model -- 5.5.1. Oil Continuity Equations -- 5.5.2. Concrete Continuity Equations -- 5.5.3. Equationsof Motion -- 5.6. Comparison Between Numerical and Experimental Results -- 5.7. Control System Design -- 5.8. Prospects for the Future -- 5.9. Summary -- 5.10. Selected Bibliography -- 6. Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam / R. Loendersloot, T.H. Ooijevaar, L. Warnet, A. de Boer, and R. Akkerman -- 6.1. Introduction -- 6.2. Overviewof the Stateof the Art -- 6.2.1. Vibration Based Structural Health Monitoring -- 6.2.2. Modal Strain Energy Damage Index Algorithm -- 6.3. T-Beam with T-Joint Stiffener -- 6.4. Theory of the Modal Strain Energy Damage Index Algorithm -- 6.5. Finite Element Model -- 6.6. Experimental Analysis of the T-Beam -- 6.7. Results and Discussion -- 6.7.1. Validation of Numerical Model -- 6.7.2. Length and Starting Point of Delamination -- 6.7.3. Position of Evaluation Points -- 6.7.4. Numberof Evaluation Points -- 6.7.5. Incorporation of Torsion Modes -- 6.8. Prospects for the Future -- 6.9. Summary -- 6.10. Selected Bibliography -- 7. An Efficient Sound Source Localization Technique via Boundary Element Method / A. Seçgin and A.S. Sarıgül -- 7.1. Introduction -- 7.2. Overviewof the Stateof the Art -- 7.3. Helmholtz Integral Equation and Boundary Element Method -- 7.3.1. Full-Space Case -- 7.3.2. Half-Space Case -- 7.4. Theoretical Examples: Sound Field Determination -- 7.5. Case Study: Sound Source Localization -- 7.5.1. Surface Velocity Measurements -- 7.5.2. Boundary Element Operations -- 7.5.3. Sound Source Identification and Characterization -- 7.6. Prospects for the Future -- 7.7. Summary -- 7.8. Selected Bibliography -- 8. Dispersion Analysis of Acoustic Circumferential Waves Using Time-Frequency Representations / R. Latif, M. Laaboubi, E.H. Aassif, and G. Maze -- 8.1. Introduction -- 8.2. Overviewof the Stateof the Art -- 8.3. Time-Frequency Representations -- 8.3.1. Wigner-Ville Distribution -- 8.3.2. Spectrogram Distribution -- 8.3.3. Reassignment Spectrogram -- 8.4. Acoustic Measured Signal Backscattered by an Elastic Tube -- 8.4.1. Experimental Setup -- 8.4.2. Measured Acoustic Response -- 8.4.3. Resonance Spectrum -- 8.5. Time-Frequency Images of Experimental Acoustic Signal -- 8.5.1. Spectrogram and Wigner-Ville Images -- 8.5.2. Reassigned Spectrogram Image -- 8.6. Dispersionof the Circumferential Waves -- 8.6.1. Determination of Dispersion Curves of Circumferential Waves by the Theoretical Method -- 8.6.2. Determination of Dispersion Curves of Circumferential Waves by the Reassigned Spectrogram Image -- 8.7. Prospects for the Future -- 8.8. Summary -- 8.9. Selected Bibliography -- 9. Viscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades / C.M.A. Vasques and L.C. Cardoso -- 9.1. Introduction -- 9.2. Overviewof the Stateof the Art -- 9.3. Configurations of Viscoelastic Damping Treatments -- 9.4. Viscoelastic Constitutive Behavior -- 9.5. Finite Element Modeling of Viscoelastic Structural Systems -- 9.5.1. Some Comments on Deformation Theories -- 9.5.2. Spatial Modelingand Meshing -- 9.5.3. Damping Modeling and Solution Approaches -- 9.5.4. Frequency- and Time-Domain Implementations -- 9.5.5. Commercial FESoftware -- 9.6. Vibroacoustic Simulation and Analysis -- 9.7. Circular Saw Blades Damping: Modeling, Analysis and Design -- 9.7.1. Geometric and Material Properties of the "Saw" -- 9.7.2. FE Modeling and Vibroacoustic Media Discretization -- 9.7.3. Results -- 9.8. Prospects for the Future -- 9.9. Summary -- 10. Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches / M. Collet, M. Ouisse, K.A. Cunefare, M. Ruzzene, B. Beck, L. Airoldi, and F. Casadei -- 10.1. Introduction -- 10.2. Overviewof the Stateof the Art -- 10.3. Classical Tools for Designing RL and RCneg Shunt Circuits -- 10.3.1. Piezoelectric Modeling and Shunt Circuit Design -- 10.4. Controlling the Dispersion in Beams and Plates -- 10.4.1. Waves Dispersion Control by Using RL and Negative Capacitance Shunts on Periodically Distributed Piezoelectric Patches -- 10.4.2. Periodically Distributed Shunted Piezoelectric Patches for Controlling Structure Borne Noise -- 10.5. Optimizing Wave's Diffusionin Beam -- 10.5.1. Description and Modeling of a Periodic Beam System -- 10.5.2. Optimization of Power Flow Diffusion by Negative Capacitance Shunt Circuits -- 10.5.3. Optimization of Wave Reflection and Transmission -- 10.6. Prospects for the Future -- 10.7. Summary -- 11. Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics / M. Ouisse and E. Foltête -- 11.1. Introduction -- 11.2. Overviewof the Stateof the Art -- 11.3. Properness Condition in Structural Dynamics -- 11.3.1. Properness of Complex Modes -- 11.3.2. Illustration of Properness Impact on Inverse Procedure -- 11.3.3. Properness Enforcement -- 11.3.4. Experimental Illustration -- 11.4. Extension of Properness to Vibroacoustics -- 11.4.1. Equationsof Motion -- 11.4.2. Complex Modes for Vibroacoustics -- 11.4.3. Properness for Vibroacoustics -- 11.4.4. Methodologies for Properness Enforcement -- 11.4.5. Numerical Illustration -- 11.4.6. Experimental Test-Case -- 11.5. Prospects for the Future -- 11.6. Summary -- 11.7. Selected Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references.

1. The Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method -- 2. Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments -- 3. Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration -- 4. A Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom -- 5. Modeling and Testing of a Concrete Pumping Group Control System -- 6. Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam -- 7. An Efficient Sound Source Localization Technique via Boundary Element Method -- 8. Dispersion Analysis of Acoustic Circumferential Waves Using Time-Frequency Representations -- 9. Viscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades -- 10. Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches -- 11. Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics -- --

1. The Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method / L.M.J.S. Dinis, R.M. Natal Jorge, and J. Belinha -- 1.1. Introduction -- 1.2. Overviewof the Stateof the Art -- 1.3. The Natural Neighbour Radial Point Interpolation Method -- 1.4. Dynamic Discrete System of Equations -- 1.5. Dynamic Examples -- 1.5.1. Cantilever Beam -- 1.5.2. Variable Cross Section Beams -- 1.5.3. Shear-Wall -- 1.5.4. Square Plates -- 1.5.5. Shallow Shell -- 1.6. Prospects for the Future -- 1.7. Summary -- 1.8. Selected Bibliography -- 2. Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments / M.A. Pérez Martínez, P. Poletti, and L. Gil Espert -- 2.1. Introduction -- 2.2. Overviewof the Stateof the Art -- 2.3. Orthotropic Nature of Wood Properties -- 2.4. Influence of Moisture Changes on Wood -- 2.5. Experimental Modal Analysis of Wooden Specimens -- 2.6. Numerical Model of Wooden Plate -- 2.6.1. The Finite Element Method -- 2.6.2. Free Vibrations of Kirchhoff Plates -- 2.6.3. Perturbationof the Equationof Motion -- 2.7. Elastic Constants from Plate Vibration Measurements -- 2.8. Results -- 2.9. Concluding Remarks -- 2.10. Prospects for the Future -- 2.11. Summary -- 3. Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration / V.-H. Vu, M. Thomas, A.A. Lakis, and L. Marcouiller -- 3.1. Introduction -- 3.2. Overviewof the Stateof the Art -- 3.2.1. Operational Modal Analysis -- 3.2.2. Non-stationary Vibration -- 3.2.3. Fluid-Structure Interaction -- 3.2.4. Development of a New Method for Investigating Modal Parameters of Non-stationary Systems by Operational Modal Analysis -- 3.3. Vector Autoregressive (VAR)Modeling -- 3.4. The Short Time Autoregressive (STAR) Method -- 3.4.1. Order Updating and a Criterion for Minimum Model Order Selection -- 3.4.2. Working Procedure -- 3.5. Numerical Simulation on a Mechanical System -- 3.5.1. Discussion on Data Block Length -- 3.5.2. Simulation on Mechanical System with Time-Dependent Parameters -- 3.6. Experimental Application on an Emerging Steel Plate -- 3.7. Prospects for the Future -- 3.8. Summary -- 3.9. Selected Bibliography -- 4. A Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom / G. Cazzulani, M. Ferrari, F. Resta, and F. Ripamonti -- 4.1. Introduction -- 4.2. Overviewof the Stateof the Art -- 4.3. The System -- 4.3.1. Test Rig -- 4.3.2. Numerical Model -- 4.4. Active Modal Control -- 4.4.1. Independent Modal Control -- 4.4.2. The Modal Observer -- 4.4.3. Numerical Analysis of Modal Control -- 4.5. Feed-Forward Control -- 4.5.1. The Feed-Forward Control Logic -- 4.5.2. Numerical Analysis of the Feed-Forward Control -- 4.6. Experimental Testing -- 4.7. Prospects for the Future -- 4.8. Summary -- 4.9. Selected Bibliography -- 5. Modeling and Testing of a Concrete Pumping Group Control System / C. Ghielmetti, H. Giberti, and F. Resta -- 5.1. Introduction -- 5.2. Overviewof the Stateof the Art -- 5.3. Descriptionof the Entire System -- 5.4. Experimental Tests -- 5.5. Mathematical Model -- 5.5.1. Oil Continuity Equations -- 5.5.2. Concrete Continuity Equations -- 5.5.3. Equationsof Motion -- 5.6. Comparison Between Numerical and Experimental Results -- 5.7. Control System Design -- 5.8. Prospects for the Future -- 5.9. Summary -- 5.10. Selected Bibliography -- 6. Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam / R. Loendersloot, T.H. Ooijevaar, L. Warnet, A. de Boer, and R. Akkerman -- 6.1. Introduction -- 6.2. Overviewof the Stateof the Art -- 6.2.1. Vibration Based Structural Health Monitoring -- 6.2.2. Modal Strain Energy Damage Index Algorithm -- 6.3. T-Beam with T-Joint Stiffener -- 6.4. Theory of the Modal Strain Energy Damage Index Algorithm -- 6.5. Finite Element Model -- 6.6. Experimental Analysis of the T-Beam -- 6.7. Results and Discussion -- 6.7.1. Validation of Numerical Model -- 6.7.2. Length and Starting Point of Delamination -- 6.7.3. Position of Evaluation Points -- 6.7.4. Numberof Evaluation Points -- 6.7.5. Incorporation of Torsion Modes -- 6.8. Prospects for the Future -- 6.9. Summary -- 6.10. Selected Bibliography -- 7. An Efficient Sound Source Localization Technique via Boundary Element Method / A. Seçgin and A.S. Sarıgül -- 7.1. Introduction -- 7.2. Overviewof the Stateof the Art -- 7.3. Helmholtz Integral Equation and Boundary Element Method -- 7.3.1. Full-Space Case -- 7.3.2. Half-Space Case -- 7.4. Theoretical Examples: Sound Field Determination -- 7.5. Case Study: Sound Source Localization -- 7.5.1. Surface Velocity Measurements -- 7.5.2. Boundary Element Operations -- 7.5.3. Sound Source Identification and Characterization -- 7.6. Prospects for the Future -- 7.7. Summary -- 7.8. Selected Bibliography -- 8. Dispersion Analysis of Acoustic Circumferential Waves Using Time-Frequency Representations / R. Latif, M. Laaboubi, E.H. Aassif, and G. Maze -- 8.1. Introduction -- 8.2. Overviewof the Stateof the Art -- 8.3. Time-Frequency Representations -- 8.3.1. Wigner-Ville Distribution -- 8.3.2. Spectrogram Distribution -- 8.3.3. Reassignment Spectrogram -- 8.4. Acoustic Measured Signal Backscattered by an Elastic Tube -- 8.4.1. Experimental Setup -- 8.4.2. Measured Acoustic Response -- 8.4.3. Resonance Spectrum -- 8.5. Time-Frequency Images of Experimental Acoustic Signal -- 8.5.1. Spectrogram and Wigner-Ville Images -- 8.5.2. Reassigned Spectrogram Image -- 8.6. Dispersionof the Circumferential Waves -- 8.6.1. Determination of Dispersion Curves of Circumferential Waves by the Theoretical Method -- 8.6.2. Determination of Dispersion Curves of Circumferential Waves by the Reassigned Spectrogram Image -- 8.7. Prospects for the Future -- 8.8. Summary -- 8.9. Selected Bibliography -- 9. Viscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades / C.M.A. Vasques and L.C. Cardoso -- 9.1. Introduction -- 9.2. Overviewof the Stateof the Art -- 9.3. Configurations of Viscoelastic Damping Treatments -- 9.4. Viscoelastic Constitutive Behavior -- 9.5. Finite Element Modeling of Viscoelastic Structural Systems -- 9.5.1. Some Comments on Deformation Theories -- 9.5.2. Spatial Modelingand Meshing -- 9.5.3. Damping Modeling and Solution Approaches -- 9.5.4. Frequency- and Time-Domain Implementations -- 9.5.5. Commercial FESoftware -- 9.6. Vibroacoustic Simulation and Analysis -- 9.7. Circular Saw Blades Damping: Modeling, Analysis and Design -- 9.7.1. Geometric and Material Properties of the "Saw" -- 9.7.2. FE Modeling and Vibroacoustic Media Discretization -- 9.7.3. Results -- 9.8. Prospects for the Future -- 9.9. Summary -- 10. Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches / M. Collet, M. Ouisse, K.A. Cunefare, M. Ruzzene, B. Beck, L. Airoldi, and F. Casadei -- 10.1. Introduction -- 10.2. Overviewof the Stateof the Art -- 10.3. Classical Tools for Designing RL and RCneg Shunt Circuits -- 10.3.1. Piezoelectric Modeling and Shunt Circuit Design -- 10.4. Controlling the Dispersion in Beams and Plates -- 10.4.1. Waves Dispersion Control by Using RL and Negative Capacitance Shunts on Periodically Distributed Piezoelectric Patches -- 10.4.2. Periodically Distributed Shunted Piezoelectric Patches for Controlling Structure Borne Noise -- 10.5. Optimizing Wave's Diffusionin Beam -- 10.5.1. Description and Modeling of a Periodic Beam System -- 10.5.2. Optimization of Power Flow Diffusion by Negative Capacitance Shunt Circuits -- 10.5.3. Optimization of Wave Reflection and Transmission -- 10.6. Prospects for the Future -- 10.7. Summary -- 11. Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics / M. Ouisse and E. Foltête -- 11.1. Introduction -- 11.2. Overviewof the Stateof the Art -- 11.3. Properness Condition in Structural Dynamics -- 11.3.1. Properness of Complex Modes -- 11.3.2. Illustration of Properness Impact on Inverse Procedure -- 11.3.3. Properness Enforcement -- 11.3.4. Experimental Illustration -- 11.4. Extension of Properness to Vibroacoustics -- 11.4.1. Equationsof Motion -- 11.4.2. Complex Modes for Vibroacoustics -- 11.4.3. Properness for Vibroacoustics -- 11.4.4. Methodologies for Properness Enforcement -- 11.4.5. Numerical Illustration -- 11.4.6. Experimental Test-Case -- 11.5. Prospects for the Future -- 11.6. Summary -- 11.7. Selected Bibliography.

Machine converted from AACR2 source record.

There are no comments on this title.

to post a comment.

Powered by Koha