Image from Coce

Automotive model predictive control : models, methods and applications / edited by Luigi del Re [and others].

Contributor(s): Material type: TextTextSeries: Lecture notes in control and information sciences ; 402.Publisher: Berlin : Springer, 2010Description: xiii, 284 pages : illustrations (some colour) ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 1849960704
  • 9781849960700
Subject(s): DDC classification:
  • 629.83 22
LOC classification:
  • TJ212.2 .A88 2010
Contents:
1. Chances and Challenges in Automotive Predictive Control / Luigi del Re, Peter Ortner, Daniel Alberer -- 1.1. Introduction: The Rationale -- 1.2. Alternatives for Modeling -- 1.2.1. First Principles Models -- 1.2.2. Data-only Models -- 1.2.3. Advanced Use of Data -- 1.3. Alternatives for Optimization -- 1.3.1. Basic Algorithmic Approaches -- 1.3.2. Coping with Nonlinearity -- 1.4. Chances: State and Outlook -- 1.5. Conclusions -- Part I. Models -- 2. On Board NOx Prediction in Diesel Engines: A Physical Approach / Jean Arregle, J. Javier Lopez, Carlos Guardiola, B Christelle Monin -- 2.1. Introduction -- 2.2. Main Physical /Chemical Mechanisms of NOx Formation /Destruction -- 2.2.1. NOx Re-burning -- 2.2.2. NOx Formation in LTC Conditions -- 2.3. Mechanisms and Model Sensitivity -- 2.3.1. Structure of Physically-based NOx Models -- 2.3.2. Flame Temperature Determination -- 2.4. Input Parameters Accuracy -- 2.4.1. Intake Air Mass Flow Rate Accuracy -- 2.4.2. Air + EGR Mixture Temperature and Oxygen Fraction -- 2.5. Conclusions -- 3. Mean Value Engine Models Applied to Control System Design and Validation / Pierre Olivier Calendini, Stefan Breuer -- 3.1. State of the Art Mean Value Engine Model -- 3.2. System Model Structure as a Response to the Requirements -- 3.2.1. Bond Graph Applied to Mean Value Engine Models -- 3.2.2. Naturally Aspirated and Turbocharged Engine in Bond Graph Structure -- 3.3. Basic Blocs for Building Mean Value Models -- 3.3.1. The Volume Bloc -- 3.3.2. The Gas Exchange Bloc -- 3.3.3. Heat Exchange Models -- 3.3.4. Combustion Model Possibilities -- 3.3.5. Environment Model -- 3.4. Application Example: Choice of an Air Loop Control Strategy -- 3.4.1. Implementation of the Robustness Simulation -- 3.4.2. Results of the Robustness Simulations -- 3.5. Conclusions -- 4. Physical Modeling of Turbocharged Engines and Parameter Identification / Lars Eriksson, Johan Wahlstrom, Markus Klein -- 4.1. Introduction -- 4.2. MVEM Modeling -- 4.2.1. Library Development -- 4.2.2. Building Blocks: Component Models -- 4.2.3. The Engine Cylinders: Flow, Temperature, and Torque -- 4.2.4. Implementation Examples -- 4.3. Modeling of a Diesel Engine with EGR /VGT -- 4.3.1. Experimental Data -- 4.3.2. Minimum Number of States -- 4.3.3. Model Extensions -- 4.4. Gray-Box Models and Identification -- 4.5. Conclusions -- 5. Dynamic Engine Emission Models / Markus Hirsch, Klaus Oppenauer, Luigi del Re -- 5.1. Introduction -- 5.2. Data-based Model Identification -- 5.3. Mean Value Emission Model -- 5.3.1. Input Selection -- 5.3.2. Model Structure -- 5.3.3. Parameter Identification -- 5.3.4. Regressor Selection -- 5.3.5. Realization and Results -- 5.4. Crank Angle Based Emission Model -- 5.4.1. Workflow -- 5.4.2. 1-zone Process Calculation -- 5.4.3. 2-zone Model -- 5.4.4. Emission Models -- 5.4.5. Model Development and Verification -- 5.5. Data for Identification: Input Design -- 5.6. Limitations -- 5.7. Summary -- 6. Modeling and Model-based Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics / Rolf Johansson, Per Tunestal, Anders Widd -- 6.1. Introduction -- 6.2. HCCI Modeling -- 6.2.1. Fuel Modeling -- 6.2.2. Auto-ignition Modeling -- 6.2.3. Thermal Modeling and Auto-ignition -- 6.3. Experiments -- 6.3.1. Model Predictive Control -- 6.4. Conclusions -- Part II. Methods -- 7. An Overview of Nonlinear Model Predictive Control / Lalo Magni, Riccardo Scattolini -- 7.1. Introduction -- 7.2. Problem Formulation and State-feedback NMPC Control Law -- 7.2.1. Feasibility and Stability in Nominal Conditions -- 7.2.2. The Robustness Problem -- 7.3. Output Feedback and Tracking -- 7.3.1. Output Feedback -- 7.3.2. Tracking -- 7.4. Implementation Problems and Alternative Approaches -- 8. Optimal Control Using Pontryagin's Maximum Principle and Dynamic Programming / Bart Saerens, Moritz Diehl, Eric Van den Bulck -- 8.1. Introduction -- 8.2. Optimal Control -- 8.2.1. Pontryagin's Maximum Principle -- 8.2.2. Dynamic Programming -- 8.3. Vehicle and Powertrain Model -- 8.3.1. Vehicle and Driveline Model -- 8.3.2. Engine Model -- 8.4. Minimum-fuel Acceleration with the Maximum Principle -- 8.5. Minimum-fuel Acceleration with Dynamic Programming -- 8.6. Discussion of the Results -- 8.6.1. Comparison between the Maximum Principle and Dynamic Programming -- 8.6.2. Comparison with Other Research -- 8.7. Conclusions -- 9. On the Use of Parameterized NMPC in Real-time Automotive Control (Mazen Alamir, Andre Murilo, Rachid Amari, Paolina Tona, Richard Furhapter, Peter Ortner( -- 9.1. Introduction -- 9.2. The Parameterized NMPC: Definitions and Notation -- 9.3. Example 1: Diesel Engine Air Path Control -- 9.4. Example 2: Automated Manual Transmission Control -- 9.5. Conclusion -- Part III. Applications --
10. An Application of MPC Starting Automotive Spark Ignition Engine in SICE Benchmark Problem / Akira Ohata, Masaki Yamakita -- 10.1. Introduction -- 10.2. Control Design Strategy in MBD -- 10.3. Benchmark Problem -- 10.4. Application of MPC -- 10.5. Summary -- 11. Model Predictive Control of Partially Premixed Combustion / Per Tunestal, Magnus Lewander -- 11.1. Introduction -- 11.2. Experimental Setup -- 11.3. PPC Definition -- 11.4. Control -- 11.4.1. Control Design -- 11.5. Results -- 11.5.1. Response to EGR Disturbance -- 11.5.2. Response to Load Changes -- 11.5.3. Response to Speed Changes -- 11.6. Discussion -- 11.7. Conclusions -- 12. Model Predictive Powertrain Control: An Application to Idle Speed Regulation / Stefano Di Cairano, Diana Yanakiev, Alberto Bemporad, Ilya Kolmanovsky, Davor Hrovat -- 12.1. Introduction -- 12.2. Engine Model for Idle Speed Control -- 12.3. Control-oriented Model and Controller Design -- 12.4. Controller Synthesis and Refinement -- 12.4.1. Feedback Law Synthesis and Functional Assessment -- 12.4.2. Prediction Model Refinement -- 12.5. Experimental Validation -- 12.6. Conclusions -- 13. On Low Complexity Predictive Approaches to Control of Autonomous Vehicles / Paolo Falcone, Francesco Borrelli, Eric H. Tseng, Davor Hrovat -- 13.1. Introduction to Autonomous Guidance Systems -- 13.2. Vehicle Modeling -- 13.3. Low Complexity Predictive Path Following -- 13.3.1. Two Levels Autonomous Path Following -- 13.3.2. Single Level Autonomous Path Following -- 13.4. Results -- 13.5. Conclusions -- 14. Toward a Systematic Design for Turbocharged Engine Control / Greg Stewart, Francesco Borrelli, Jaroslav Pekar, David Germann, Daniel Pachner, Dejan Kihas -- 14.1. Introduction -- 14.2. Engine Control Requirements -- 14.2.1. Steady-state Engine Calibration -- 14.2.2. Control Functional Development -- 14.2.3. Functional Testing -- 14.2.4. Software Development -- 14.2.5. Integration -- 14.2.6. Calibration -- 14.2.7. Certification -- 14.2.8. Release and Post-release Support -- 14.2.9. Iteration Loops -- 14.3. Modeling and Control for Turbocharged Engines -- 14.3.1. Modeling -- 14.4. Model Predictive Control and Computational Complexity -- 14.4.1. Explicit Predictive Control -- 14.4.2. On the Complexity of Explicit MPC Control Laws -- 14.5. Summary and Conclusions -- 15. An Integrated LTV-MPC Lateral Vehicle Dynamics Control: Simulation Results / Giovanni Palmieri, Osvaldo Barbarisi, Stefano Scala, Luigi Glielmo -- 15.1. Introduction -- 15.2. Full Vehicle Model -- 15.3. Lateral Vehicle Dynamic Control Strategy -- 15.3.1. Reference Signals -- 15.3.2. Estimation of Tire Variables -- 15.3.3. Supervisor -- 15.3.4. Model Predictive Control -- 15.3.5. An Alternative 2PI Regulator -- 15.4. A Reduced Model for Slip Control -- 15.5. A Slip Control Strategy -- 15.5.1. Feedback Action -- 15.6. Simulation Results -- 15.7. Conclusions -- 16. MIMO Model Predictive Control for Integral Gas Engines / Jakob Angeby, Matthias Huschenbett, Daniel Alberer -- 16.1. Introduction -- 16.2. System Description -- 16.3. Problem Statement -- 16.4. Model Predictive Control -- 16.5. Implementation -- 16.5.1. Objective Function -- 16.5.2. Model Derivation -- 16.6. Model Extensions -- 16.7. Real-time MPC -- 16.8. Results -- 16.9. Conclusions -- 17. A Model Predictive Control Approach to Design a Parameterized Adaptive Cruise Control / Gerrit J.L. Naus, Jeroen Ploeg, M.J.G. Van de Molengraft, W.P.M.H. Heemels, Maarten Steinbuch -- 17.1. Introduction -- 17.2. Problem Formulation -- 17.2.1. Quantification Measures -- 17.2.2. Parameterization -- 17.3. Model Predictive Control Problem Setup -- 17.3.1. Modeling -- 17.3.2. Control Objectives and Constraints -- 17.3.3. Control Problem / Cost Criterion Formulation -- 17.4. Controller Design -- 17.4.1. Parameterization -- 17.4.2. Implementation Issues -- 17.4.3. Results -- 17.5. Conclusions and Future Work.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Book City Campus City Campus Main Collection 629.83 AUT (Browse shelf(Opens below)) 1 Issued 11/10/2024 A457355B

Includes bibliographical references and index.

1. Chances and Challenges in Automotive Predictive Control / Luigi del Re, Peter Ortner, Daniel Alberer -- 1.1. Introduction: The Rationale -- 1.2. Alternatives for Modeling -- 1.2.1. First Principles Models -- 1.2.2. Data-only Models -- 1.2.3. Advanced Use of Data -- 1.3. Alternatives for Optimization -- 1.3.1. Basic Algorithmic Approaches -- 1.3.2. Coping with Nonlinearity -- 1.4. Chances: State and Outlook -- 1.5. Conclusions -- Part I. Models -- 2. On Board NOx Prediction in Diesel Engines: A Physical Approach / Jean Arregle, J. Javier Lopez, Carlos Guardiola, B Christelle Monin -- 2.1. Introduction -- 2.2. Main Physical /Chemical Mechanisms of NOx Formation /Destruction -- 2.2.1. NOx Re-burning -- 2.2.2. NOx Formation in LTC Conditions -- 2.3. Mechanisms and Model Sensitivity -- 2.3.1. Structure of Physically-based NOx Models -- 2.3.2. Flame Temperature Determination -- 2.4. Input Parameters Accuracy -- 2.4.1. Intake Air Mass Flow Rate Accuracy -- 2.4.2. Air + EGR Mixture Temperature and Oxygen Fraction -- 2.5. Conclusions -- 3. Mean Value Engine Models Applied to Control System Design and Validation / Pierre Olivier Calendini, Stefan Breuer -- 3.1. State of the Art Mean Value Engine Model -- 3.2. System Model Structure as a Response to the Requirements -- 3.2.1. Bond Graph Applied to Mean Value Engine Models -- 3.2.2. Naturally Aspirated and Turbocharged Engine in Bond Graph Structure -- 3.3. Basic Blocs for Building Mean Value Models -- 3.3.1. The Volume Bloc -- 3.3.2. The Gas Exchange Bloc -- 3.3.3. Heat Exchange Models -- 3.3.4. Combustion Model Possibilities -- 3.3.5. Environment Model -- 3.4. Application Example: Choice of an Air Loop Control Strategy -- 3.4.1. Implementation of the Robustness Simulation -- 3.4.2. Results of the Robustness Simulations -- 3.5. Conclusions -- 4. Physical Modeling of Turbocharged Engines and Parameter Identification / Lars Eriksson, Johan Wahlstrom, Markus Klein -- 4.1. Introduction -- 4.2. MVEM Modeling -- 4.2.1. Library Development -- 4.2.2. Building Blocks: Component Models -- 4.2.3. The Engine Cylinders: Flow, Temperature, and Torque -- 4.2.4. Implementation Examples -- 4.3. Modeling of a Diesel Engine with EGR /VGT -- 4.3.1. Experimental Data -- 4.3.2. Minimum Number of States -- 4.3.3. Model Extensions -- 4.4. Gray-Box Models and Identification -- 4.5. Conclusions -- 5. Dynamic Engine Emission Models / Markus Hirsch, Klaus Oppenauer, Luigi del Re -- 5.1. Introduction -- 5.2. Data-based Model Identification -- 5.3. Mean Value Emission Model -- 5.3.1. Input Selection -- 5.3.2. Model Structure -- 5.3.3. Parameter Identification -- 5.3.4. Regressor Selection -- 5.3.5. Realization and Results -- 5.4. Crank Angle Based Emission Model -- 5.4.1. Workflow -- 5.4.2. 1-zone Process Calculation -- 5.4.3. 2-zone Model -- 5.4.4. Emission Models -- 5.4.5. Model Development and Verification -- 5.5. Data for Identification: Input Design -- 5.6. Limitations -- 5.7. Summary -- 6. Modeling and Model-based Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics / Rolf Johansson, Per Tunestal, Anders Widd -- 6.1. Introduction -- 6.2. HCCI Modeling -- 6.2.1. Fuel Modeling -- 6.2.2. Auto-ignition Modeling -- 6.2.3. Thermal Modeling and Auto-ignition -- 6.3. Experiments -- 6.3.1. Model Predictive Control -- 6.4. Conclusions -- Part II. Methods -- 7. An Overview of Nonlinear Model Predictive Control / Lalo Magni, Riccardo Scattolini -- 7.1. Introduction -- 7.2. Problem Formulation and State-feedback NMPC Control Law -- 7.2.1. Feasibility and Stability in Nominal Conditions -- 7.2.2. The Robustness Problem -- 7.3. Output Feedback and Tracking -- 7.3.1. Output Feedback -- 7.3.2. Tracking -- 7.4. Implementation Problems and Alternative Approaches -- 8. Optimal Control Using Pontryagin's Maximum Principle and Dynamic Programming / Bart Saerens, Moritz Diehl, Eric Van den Bulck -- 8.1. Introduction -- 8.2. Optimal Control -- 8.2.1. Pontryagin's Maximum Principle -- 8.2.2. Dynamic Programming -- 8.3. Vehicle and Powertrain Model -- 8.3.1. Vehicle and Driveline Model -- 8.3.2. Engine Model -- 8.4. Minimum-fuel Acceleration with the Maximum Principle -- 8.5. Minimum-fuel Acceleration with Dynamic Programming -- 8.6. Discussion of the Results -- 8.6.1. Comparison between the Maximum Principle and Dynamic Programming -- 8.6.2. Comparison with Other Research -- 8.7. Conclusions -- 9. On the Use of Parameterized NMPC in Real-time Automotive Control (Mazen Alamir, Andre Murilo, Rachid Amari, Paolina Tona, Richard Furhapter, Peter Ortner( -- 9.1. Introduction -- 9.2. The Parameterized NMPC: Definitions and Notation -- 9.3. Example 1: Diesel Engine Air Path Control -- 9.4. Example 2: Automated Manual Transmission Control -- 9.5. Conclusion -- Part III. Applications --

10. An Application of MPC Starting Automotive Spark Ignition Engine in SICE Benchmark Problem / Akira Ohata, Masaki Yamakita -- 10.1. Introduction -- 10.2. Control Design Strategy in MBD -- 10.3. Benchmark Problem -- 10.4. Application of MPC -- 10.5. Summary -- 11. Model Predictive Control of Partially Premixed Combustion / Per Tunestal, Magnus Lewander -- 11.1. Introduction -- 11.2. Experimental Setup -- 11.3. PPC Definition -- 11.4. Control -- 11.4.1. Control Design -- 11.5. Results -- 11.5.1. Response to EGR Disturbance -- 11.5.2. Response to Load Changes -- 11.5.3. Response to Speed Changes -- 11.6. Discussion -- 11.7. Conclusions -- 12. Model Predictive Powertrain Control: An Application to Idle Speed Regulation / Stefano Di Cairano, Diana Yanakiev, Alberto Bemporad, Ilya Kolmanovsky, Davor Hrovat -- 12.1. Introduction -- 12.2. Engine Model for Idle Speed Control -- 12.3. Control-oriented Model and Controller Design -- 12.4. Controller Synthesis and Refinement -- 12.4.1. Feedback Law Synthesis and Functional Assessment -- 12.4.2. Prediction Model Refinement -- 12.5. Experimental Validation -- 12.6. Conclusions -- 13. On Low Complexity Predictive Approaches to Control of Autonomous Vehicles / Paolo Falcone, Francesco Borrelli, Eric H. Tseng, Davor Hrovat -- 13.1. Introduction to Autonomous Guidance Systems -- 13.2. Vehicle Modeling -- 13.3. Low Complexity Predictive Path Following -- 13.3.1. Two Levels Autonomous Path Following -- 13.3.2. Single Level Autonomous Path Following -- 13.4. Results -- 13.5. Conclusions -- 14. Toward a Systematic Design for Turbocharged Engine Control / Greg Stewart, Francesco Borrelli, Jaroslav Pekar, David Germann, Daniel Pachner, Dejan Kihas -- 14.1. Introduction -- 14.2. Engine Control Requirements -- 14.2.1. Steady-state Engine Calibration -- 14.2.2. Control Functional Development -- 14.2.3. Functional Testing -- 14.2.4. Software Development -- 14.2.5. Integration -- 14.2.6. Calibration -- 14.2.7. Certification -- 14.2.8. Release and Post-release Support -- 14.2.9. Iteration Loops -- 14.3. Modeling and Control for Turbocharged Engines -- 14.3.1. Modeling -- 14.4. Model Predictive Control and Computational Complexity -- 14.4.1. Explicit Predictive Control -- 14.4.2. On the Complexity of Explicit MPC Control Laws -- 14.5. Summary and Conclusions -- 15. An Integrated LTV-MPC Lateral Vehicle Dynamics Control: Simulation Results / Giovanni Palmieri, Osvaldo Barbarisi, Stefano Scala, Luigi Glielmo -- 15.1. Introduction -- 15.2. Full Vehicle Model -- 15.3. Lateral Vehicle Dynamic Control Strategy -- 15.3.1. Reference Signals -- 15.3.2. Estimation of Tire Variables -- 15.3.3. Supervisor -- 15.3.4. Model Predictive Control -- 15.3.5. An Alternative 2PI Regulator -- 15.4. A Reduced Model for Slip Control -- 15.5. A Slip Control Strategy -- 15.5.1. Feedback Action -- 15.6. Simulation Results -- 15.7. Conclusions -- 16. MIMO Model Predictive Control for Integral Gas Engines / Jakob Angeby, Matthias Huschenbett, Daniel Alberer -- 16.1. Introduction -- 16.2. System Description -- 16.3. Problem Statement -- 16.4. Model Predictive Control -- 16.5. Implementation -- 16.5.1. Objective Function -- 16.5.2. Model Derivation -- 16.6. Model Extensions -- 16.7. Real-time MPC -- 16.8. Results -- 16.9. Conclusions -- 17. A Model Predictive Control Approach to Design a Parameterized Adaptive Cruise Control / Gerrit J.L. Naus, Jeroen Ploeg, M.J.G. Van de Molengraft, W.P.M.H. Heemels, Maarten Steinbuch -- 17.1. Introduction -- 17.2. Problem Formulation -- 17.2.1. Quantification Measures -- 17.2.2. Parameterization -- 17.3. Model Predictive Control Problem Setup -- 17.3.1. Modeling -- 17.3.2. Control Objectives and Constraints -- 17.3.3. Control Problem / Cost Criterion Formulation -- 17.4. Controller Design -- 17.4.1. Parameterization -- 17.4.2. Implementation Issues -- 17.4.3. Results -- 17.5. Conclusions and Future Work.

Machine converted from AACR2 source record.

There are no comments on this title.

to post a comment.

Powered by Koha