Image from Coce

Optimizing wireless communication systems / edited by Francisco Rodrigo Porto Cavalcanti, Sören Andersson.

Contributor(s): Material type: TextTextPublisher: London : Springer, 2009Description: xli, 154 pages : illustrations ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 144190154X
  • 9781441901545
Other title:
  • Optimising wireless communication systems
Subject(s): DDC classification:
  • 621.384 22
Contents:
Part I. Resource Allocation -- 1. Power Control for Wireless Networks: Conventional and QoS-Flexible Approaches / F. de S. Chaves, F. R. P. Cavalcanti, R. A. de Oliveira Neto, and R. B. Santos -- 1.1. Introduction -- 1.2. Models and Basic Definitions -- 1.3. Centralized Power Control -- 1.4. Distributed Power Control -- 1.5. Feasibility and Convergence Aspects of Distributed Power Control -- 1.6. Power Control for QoS-Flexible Services -- 1.7. Power Control Games -- 1.8. Prediction of Channel State Information -- 1.9. Conclusions and Topics for Future Research -- 2. RRM Performance for GSM /EDGE Radio Acess Network / Y. C. B. Silva, T. F. Maciel, and F. R. P. Cavalcanti -- 2.1. Introduction -- 2.2. Fundamentals of RRM in GSM /EDGE -- 2.3. Advanced Radio Resource Management for GSM /EDGE -- 2.4. Simulation andModeling of GSM /EDGE Networks -- 2.5. RRM Performance in GSM /EDGE -- 2.6. Conclusions and Research Directions -- 3. Performance Optimization in Practical HSPA Networks for Wireless Broadband Access / M. I. J. Da Silva -- 3.1. Introduction to Broadband Wireless Access -- 3.2. System Overview -- 3.3. HSDPA Performance -- 3.4. HSDPA Field Trials: Mobility Issues -- 3.5. HSUPA Results: Field Trials -- 3.6. Applications Performance over HSPA -- 3.7. Capacity Planning -- 3.8. Conclusion and Research Directions -- 4. Congestion Control forWireless Cellular Systems with Applications to UMTS / E. B. Rodrigues, F. R. P. Cavalcanti, and S. Wanstedt -- 4.1. Introduction -- 4.2. Congestion Control and QoS Management -- 4.3. Congestion Control Framework and Radio Resource Management -- 4.4. Resource-Based and QoS-Based Congestion Control -- 4.5. Resource-Based Framework for Circuit-Switched Networks -- 4.6. Case Study: WCDMA Performance with Circuit-Switched Voice -- 4.7. QoS-Based Framework for Packet-Switched Networks -- 4.8. Case Study: HSDPA Performance with VoIP andWWWServices -- 4.9. Conclusions and Research Directions -- 5. Resource Allocation in Multiuser Multicarrier Wireless Systems with Applications to LTE / W. Freitas Jr., F. R. M. Lima, R. B. Santos, and F. R. P. Cavalcanti -- 5.1. Introduction -- 5.2. Scenarios for Radio Resource Allocation -- 5.3. Radio Resource Allocation Fundamental Problems -- 5.4. Optimization Problems inMulticarrier Resource Allocation -- 5.5. Optimization Tools for Multicarrier Resource Allocation Problems -- 5.6. Algorithms for Frequency Resource Assignment -- 5.7. Subcarrier Assignment in 3GPP's Long-Term Evolution / Lte -- 5.8. Power Allocation Algorithms and Performance in OFDMA -- 5.9. Conclusions and Research Directions -- 6. Common RRM for Multiaccess Wireless Networks / A. P. da Silva, L. S. Cardoso, V. A. de Sousa Jr., and F. R. P. Cavalcanti -- 6.1. Introduction -- 6.2. Multiaccess Networks -- 6.3. Common Radio Resource Management -- 6.4. Performance of Access Selection -- 6.5. Access Selection Solutions Performance in Practical Scenarios -- 6.6. Performance of Access Selection and Vertical Handover -- 6.7. Case Study: Access Selection in an UTRAN and WLAN -- 6.8. Conclusions and Research Directions --
Part II. Transceiver Architectures -- 7. Strategies for Link-Level Performance Assessment in the Simulation of Wireless Systems / E. M. G. Stancanelli, C. H. M. de Lima, and D. C. Moreira -- 7.1. Introduction -- 7.2. Rationale for Link-Level Performance Evaluation -- 7.3. Link-LevelModeling -- 7.4. Link-Level Software Development Framework -- 7.5. Design of Link-to-System Interfaces -- 7.6. Conclusions and Research Directions -- 8. Channel Equalization Techniques for Wireless Communications Systems / C. M. Panazio, A. O. Neves, R. R. Lopes, and J. M. T. Romano -- 8.1. Introduction and Motivation -- 8.2. Channel Modeling -- 8.3. Equalization Criteria and Adaptive Algorithms -- 8.4. Improving Equalization Performance Over Time Dispersive Channels -- 8.5. Equalization with Multiple Antennas -- 8.6. Turbo-equalization: Near Optimal Performance in Coded Systems -- 8.7. Conclusions -- 9. Channel Estimation for OFDM Systems: Techniques, Algorithms, and Performance / R. F. Vigelis, D. C. Moreira, and C. C. Cavalcante -- 9.1. Introduction -- 9.2. OFDM Fundamentals -- 9.3. Channel Estimation for Time-Varying Channels -- 9.4. Recursive Methods -- 9.5. Channel Estimation for MIMO-OFDM Wireless Systems -- 9.6. Conclusions and Research Directions -- 10. Link Adaptation for MIMO-OFDM Systems / D. C. Moreira, W. C. Freitas Jr., C. A. de Araujo, and C. C. Cavalcante -- 10.1. Introduction -- 10.2. Fundamentals of MIMO Transceiver Architectures -- 10.3. Advanced MIMO Transceiver Architectures -- 10.4. Link Adaptation in Multiple Signal Dimensions -- 10.5. Summary -- 11. Multiuser MIMO Systems Using STFMA PARAFAC Tensor Modeling / A. L. F. de Almeida, G. Favier, and J. C. M. Mota -- 11.1. Introduction -- 11.2. Tensor Decompositions: A New Signal Processing Tool -- 11.3. Background on the PARAFAC Tensor Decomposition -- 11.4. Space - Time - Frequency Multiple-Access MIMO System -- 11.5. STFMA Performance with Perfect Channel Knowledge -- 11.6. PARAFAC TensorModeling for the STFMA System -- 11.7. Blind Detection -- 11.8. Simulation Results with Blind Detection -- 11.9. Conclusions and Research Directions -- 12. MIMO Transceiver Design for Enhanced Performance Under Limited Feedback / I. L. J. da Silva, A. L. F. de Almeida, F. R. P. Cavalcanti, and G. Favier -- 12.1. Introduction -- 12.2. Background on Limited Feedback-Based MIMO Systems -- 12.3. Channel-Adaptive Limited Feedback Beamforming Techniques -- 12.4. Linear Precoding for Spatial Multiplexing Systems -- 12.5. Linear Precoding for Space - Time-Coded Systems -- 12.6. Tensor-Based Space - Time Precoding / Tstp -- 12.7. Conclusions and Research Directions.
Summary: "Optimizing Wireless Communication Systems presents the underlying technological breakthroughs that allowed the current state of wireless technology development to evolve. The focus is on the two lower layers of the ISO/OSI layered model, specifically the physical and data link layers including the link and media access control sublayers. These two layers are of particular importance to wireless systems due to the spectrum shortage, the broadcast nature of interference, and time variability in the wireless channel. The material is divided into two parts. First, is the section on Resource Allocation, which is also known as Radio Resource Management or RRM, that discusses how to increase spectrum efficiency. It also presents solutions for performance optimization in mobile communication standards such as GSM, EDGE, WCDMA, HSPA and LTE. The second section is Transceiver Architectures, which covers wireless link capacity related to OFDM and MIMO. Each chapter within the book includes state-of-the-art concepts, introductory sections to the basics, and references for further reading. Several chapters also include technical details from various standards along with performance results and case studies. Optimizing Wireless Communication Systems is for researchers and practitioners in the field of wireless communications involved with the design and optimization of current and emerging wireless access technologies for mobile communications."--Publisher's website.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Book City Campus City Campus Main Collection 621.384 OPT (Browse shelf(Opens below)) 1 Available A455542B

Includes bibliographical references and index.

Part I. Resource Allocation -- 1. Power Control for Wireless Networks: Conventional and QoS-Flexible Approaches / F. de S. Chaves, F. R. P. Cavalcanti, R. A. de Oliveira Neto, and R. B. Santos -- 1.1. Introduction -- 1.2. Models and Basic Definitions -- 1.3. Centralized Power Control -- 1.4. Distributed Power Control -- 1.5. Feasibility and Convergence Aspects of Distributed Power Control -- 1.6. Power Control for QoS-Flexible Services -- 1.7. Power Control Games -- 1.8. Prediction of Channel State Information -- 1.9. Conclusions and Topics for Future Research -- 2. RRM Performance for GSM /EDGE Radio Acess Network / Y. C. B. Silva, T. F. Maciel, and F. R. P. Cavalcanti -- 2.1. Introduction -- 2.2. Fundamentals of RRM in GSM /EDGE -- 2.3. Advanced Radio Resource Management for GSM /EDGE -- 2.4. Simulation andModeling of GSM /EDGE Networks -- 2.5. RRM Performance in GSM /EDGE -- 2.6. Conclusions and Research Directions -- 3. Performance Optimization in Practical HSPA Networks for Wireless Broadband Access / M. I. J. Da Silva -- 3.1. Introduction to Broadband Wireless Access -- 3.2. System Overview -- 3.3. HSDPA Performance -- 3.4. HSDPA Field Trials: Mobility Issues -- 3.5. HSUPA Results: Field Trials -- 3.6. Applications Performance over HSPA -- 3.7. Capacity Planning -- 3.8. Conclusion and Research Directions -- 4. Congestion Control forWireless Cellular Systems with Applications to UMTS / E. B. Rodrigues, F. R. P. Cavalcanti, and S. Wanstedt -- 4.1. Introduction -- 4.2. Congestion Control and QoS Management -- 4.3. Congestion Control Framework and Radio Resource Management -- 4.4. Resource-Based and QoS-Based Congestion Control -- 4.5. Resource-Based Framework for Circuit-Switched Networks -- 4.6. Case Study: WCDMA Performance with Circuit-Switched Voice -- 4.7. QoS-Based Framework for Packet-Switched Networks -- 4.8. Case Study: HSDPA Performance with VoIP andWWWServices -- 4.9. Conclusions and Research Directions -- 5. Resource Allocation in Multiuser Multicarrier Wireless Systems with Applications to LTE / W. Freitas Jr., F. R. M. Lima, R. B. Santos, and F. R. P. Cavalcanti -- 5.1. Introduction -- 5.2. Scenarios for Radio Resource Allocation -- 5.3. Radio Resource Allocation Fundamental Problems -- 5.4. Optimization Problems inMulticarrier Resource Allocation -- 5.5. Optimization Tools for Multicarrier Resource Allocation Problems -- 5.6. Algorithms for Frequency Resource Assignment -- 5.7. Subcarrier Assignment in 3GPP's Long-Term Evolution / Lte -- 5.8. Power Allocation Algorithms and Performance in OFDMA -- 5.9. Conclusions and Research Directions -- 6. Common RRM for Multiaccess Wireless Networks / A. P. da Silva, L. S. Cardoso, V. A. de Sousa Jr., and F. R. P. Cavalcanti -- 6.1. Introduction -- 6.2. Multiaccess Networks -- 6.3. Common Radio Resource Management -- 6.4. Performance of Access Selection -- 6.5. Access Selection Solutions Performance in Practical Scenarios -- 6.6. Performance of Access Selection and Vertical Handover -- 6.7. Case Study: Access Selection in an UTRAN and WLAN -- 6.8. Conclusions and Research Directions --

Part II. Transceiver Architectures -- 7. Strategies for Link-Level Performance Assessment in the Simulation of Wireless Systems / E. M. G. Stancanelli, C. H. M. de Lima, and D. C. Moreira -- 7.1. Introduction -- 7.2. Rationale for Link-Level Performance Evaluation -- 7.3. Link-LevelModeling -- 7.4. Link-Level Software Development Framework -- 7.5. Design of Link-to-System Interfaces -- 7.6. Conclusions and Research Directions -- 8. Channel Equalization Techniques for Wireless Communications Systems / C. M. Panazio, A. O. Neves, R. R. Lopes, and J. M. T. Romano -- 8.1. Introduction and Motivation -- 8.2. Channel Modeling -- 8.3. Equalization Criteria and Adaptive Algorithms -- 8.4. Improving Equalization Performance Over Time Dispersive Channels -- 8.5. Equalization with Multiple Antennas -- 8.6. Turbo-equalization: Near Optimal Performance in Coded Systems -- 8.7. Conclusions -- 9. Channel Estimation for OFDM Systems: Techniques, Algorithms, and Performance / R. F. Vigelis, D. C. Moreira, and C. C. Cavalcante -- 9.1. Introduction -- 9.2. OFDM Fundamentals -- 9.3. Channel Estimation for Time-Varying Channels -- 9.4. Recursive Methods -- 9.5. Channel Estimation for MIMO-OFDM Wireless Systems -- 9.6. Conclusions and Research Directions -- 10. Link Adaptation for MIMO-OFDM Systems / D. C. Moreira, W. C. Freitas Jr., C. A. de Araujo, and C. C. Cavalcante -- 10.1. Introduction -- 10.2. Fundamentals of MIMO Transceiver Architectures -- 10.3. Advanced MIMO Transceiver Architectures -- 10.4. Link Adaptation in Multiple Signal Dimensions -- 10.5. Summary -- 11. Multiuser MIMO Systems Using STFMA PARAFAC Tensor Modeling / A. L. F. de Almeida, G. Favier, and J. C. M. Mota -- 11.1. Introduction -- 11.2. Tensor Decompositions: A New Signal Processing Tool -- 11.3. Background on the PARAFAC Tensor Decomposition -- 11.4. Space - Time - Frequency Multiple-Access MIMO System -- 11.5. STFMA Performance with Perfect Channel Knowledge -- 11.6. PARAFAC TensorModeling for the STFMA System -- 11.7. Blind Detection -- 11.8. Simulation Results with Blind Detection -- 11.9. Conclusions and Research Directions -- 12. MIMO Transceiver Design for Enhanced Performance Under Limited Feedback / I. L. J. da Silva, A. L. F. de Almeida, F. R. P. Cavalcanti, and G. Favier -- 12.1. Introduction -- 12.2. Background on Limited Feedback-Based MIMO Systems -- 12.3. Channel-Adaptive Limited Feedback Beamforming Techniques -- 12.4. Linear Precoding for Spatial Multiplexing Systems -- 12.5. Linear Precoding for Space - Time-Coded Systems -- 12.6. Tensor-Based Space - Time Precoding / Tstp -- 12.7. Conclusions and Research Directions.

"Optimizing Wireless Communication Systems presents the underlying technological breakthroughs that allowed the current state of wireless technology development to evolve. The focus is on the two lower layers of the ISO/OSI layered model, specifically the physical and data link layers including the link and media access control sublayers. These two layers are of particular importance to wireless systems due to the spectrum shortage, the broadcast nature of interference, and time variability in the wireless channel. The material is divided into two parts. First, is the section on Resource Allocation, which is also known as Radio Resource Management or RRM, that discusses how to increase spectrum efficiency. It also presents solutions for performance optimization in mobile communication standards such as GSM, EDGE, WCDMA, HSPA and LTE. The second section is Transceiver Architectures, which covers wireless link capacity related to OFDM and MIMO. Each chapter within the book includes state-of-the-art concepts, introductory sections to the basics, and references for further reading. Several chapters also include technical details from various standards along with performance results and case studies. Optimizing Wireless Communication Systems is for researchers and practitioners in the field of wireless communications involved with the design and optimization of current and emerging wireless access technologies for mobile communications."--Publisher's website.

Machine converted from AACR2 source record.

There are no comments on this title.

to post a comment.

Powered by Koha