Image from Coce

Engineering dynamics / Jerry Ginsberg.

By: Material type: TextTextPublisher: Cambridge ; New York : Cambridge University Press, 2008Description: xiv, 726 pages : illustrations ; 27 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 0521883032
  • 9780521883030
Subject(s): DDC classification:
  • 620.104 22
LOC classification:
  • TA352 .G57 2008
Online resources:
Contents:
1. Basic Considerations -- 1.1. Vector Operations -- 1.1.1. Algebra and Computations -- 1.1.2. Vector Calculus - Velocity and Acceleration -- 1.2. Newtonian Mechanics -- 1.2.1. Newton's Laws -- 1.2.2. Systems of Units -- 1.2.3. Energy and Momentum -- 1.3. Biographical Perspective -- 2. Particle Kinematics -- 2.1. Path Variables -- 2.1.1. Tangent and Normal Components -- 2.1.2. Parametric Description of Curves -- 2.1.3. Binormal Direction and Torsion of a Curve -- 2.2. Rectangular Cartesian Coordinates -- 2.3. Curvilinear Coordinates -- 2.3.1. Cylindrical and Polar Coordinates -- 2.3.2. Spherical Coordinates -- 2.3.3. Arbitrary Curvilinear Coordinates -- 2.4. Mixed Kinematical Descriptions -- 3. Relative Motion -- 3.1. Coordinate Transformations -- 3.1.1. Rotation Transformations -- 3.1.2. Rotation Sequences -- 3.2. Displacement -- 3.3. Time Derivatives -- 3.4. Angular Velocity and Acceleration -- 3.4.1. Analytical Description -- 3.4.2. Procedure -- 3.5. Velocity and Acceleration Analysis Using a Moving Reference -- Frame -- 3.6. Observations from a Moving Reference Frame -- 4. Kinematics of Constrained Rigid Bodies -- 4.1. General Equations -- 4.2. Eulerian Angles -- 4.3. Interconnections and Linkages -- 4.4. Rolling -- 5. Inertial Effects for a Rigid Body -- 5.1. Linear and Angular Momentum -- 5.1.1. System of Particles -- 5.1.2. Rigid Body - Basic Equations -- 5.1.3. Kinetic Energy -- 5.2. Inertia Properties -- 5.2.1. Moments and Products of Inertia -- 5.2.2. Transformations -- 5.2.3. Inertia Ellipsoid -- 5.2.4. Principal Axes -- 5.3. Rate of Change of Angular Momentum -- 6. Newton - Euler Equations of Motion -- 6.1. Fundamental Equations -- 6.1.1. Basic Considerations -- 6.1.2. Procedural Steps -- 6.2. Planar Motion -- 6.3. Newton - Euler Equations for a System -- 6.4. Momentum and Energy Principles -- 6.4.1. Impulse - Momentum Principles -- 6.4.2. Work - Energy Principles -- 6.4.3. Collisions of Rigid Bodies -- 7. Introduction to Analytical Mechanics -- 7.1. Background -- 7.1.1. Principle of Virtual Work -- 7.1.2. Principle of Dynamic Virtual Work -- 7.2. Generalized Coordinates and Kinematical Constraints -- 7.2.1. Selection of Generalized Coordinates -- 7.2.2. Constraint Equations -- 7.2.3. Configuration Space -- 7.3. Evaluation of Virtual Displacements -- 7.3.1. Analytical Method -- 7.3.2. Kinematical Method -- 7.4. Generalized Forces -- 7.4.1. Definition of Generalized Forces -- 7.4.2. Relation Between Constraint Forces and Conditions -- 7.4.3. Conservative Forces -- 7.5. Lagrange's Equations -- 7.6. Solution of Equations for Holonomic Systems -- 8. Constrained Generalized Coordinates -- 8.1. Lagrange's Equations - Constrained Case -- 8.2. Computational Methods -- 8.2.1. Algorithms -- 8.2.2. Numerical Error Checking -- 8.2.3. Initial Conditions -- 8.2.4. Analysis of Coulomb Friction -- 9. Alternative Formulations -- 9.1. Hamilton's Principle -- 9.1.1. Derivation -- 9.1.2. Calculus of Variations -- 9.1.3. Ritz Series Method -- 9.2. Generalized Momentum Principles -- 9.2.1. Hamilton's Equations -- 9.2.2. Conservation of the Hamiltonian -- 9.2.3. Ignorable Coordinates and Routh's Method -- 9.3. Formulations with Quasi-Coordinates -- 9.3.1. Quasi-Velocities and Quasi-Coordinates -- 9.3.2. Gibbs - Appell Equations -- 9.3.3. Kane's Equations -- 9.3.4. Relationship of the Formulations -- 10. Gyroscopic Effects -- 10.1. Free Motion -- 10.1.1. Axisymmetric Bodies -- 10.1.2. Arbitrary Bodies -- 10.1.3. Poinsot's Construction for Arbitrary Bodies -- 10.2. Spinning Top -- 10.3. Gyroscopes for Inertial Guidance -- 10.3.1. Free Gyroscope -- 10.3.2. Gyrocompass -- 10.3.3. Single-Axis Gyroscope.
Summary: "This text is a modern vector-oriented treatment of classical dynamics and its application to engineering problems. Based on Ginsberg's Advanced Engineering Dynamics 2nd edition, it develops a broad spectrum of kinematical concepts, which provide the framework for formulations of kinetics principles following the Newton-Euler and analytical approaches. This fresh treatment features many expanded and new derivations, with an emphasis on both breadth and depth and a focus on making the subject accessible to individuals from a broad range of backgrounds."--Publisher's website.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Book City Campus City Campus Main Collection 620.104 GIN (Browse shelf(Opens below)) 1 Available A441808B

Includes bibliographical references and index.

1. Basic Considerations -- 1.1. Vector Operations -- 1.1.1. Algebra and Computations -- 1.1.2. Vector Calculus - Velocity and Acceleration -- 1.2. Newtonian Mechanics -- 1.2.1. Newton's Laws -- 1.2.2. Systems of Units -- 1.2.3. Energy and Momentum -- 1.3. Biographical Perspective -- 2. Particle Kinematics -- 2.1. Path Variables -- 2.1.1. Tangent and Normal Components -- 2.1.2. Parametric Description of Curves -- 2.1.3. Binormal Direction and Torsion of a Curve -- 2.2. Rectangular Cartesian Coordinates -- 2.3. Curvilinear Coordinates -- 2.3.1. Cylindrical and Polar Coordinates -- 2.3.2. Spherical Coordinates -- 2.3.3. Arbitrary Curvilinear Coordinates -- 2.4. Mixed Kinematical Descriptions -- 3. Relative Motion -- 3.1. Coordinate Transformations -- 3.1.1. Rotation Transformations -- 3.1.2. Rotation Sequences -- 3.2. Displacement -- 3.3. Time Derivatives -- 3.4. Angular Velocity and Acceleration -- 3.4.1. Analytical Description -- 3.4.2. Procedure -- 3.5. Velocity and Acceleration Analysis Using a Moving Reference -- Frame -- 3.6. Observations from a Moving Reference Frame -- 4. Kinematics of Constrained Rigid Bodies -- 4.1. General Equations -- 4.2. Eulerian Angles -- 4.3. Interconnections and Linkages -- 4.4. Rolling -- 5. Inertial Effects for a Rigid Body -- 5.1. Linear and Angular Momentum -- 5.1.1. System of Particles -- 5.1.2. Rigid Body - Basic Equations -- 5.1.3. Kinetic Energy -- 5.2. Inertia Properties -- 5.2.1. Moments and Products of Inertia -- 5.2.2. Transformations -- 5.2.3. Inertia Ellipsoid -- 5.2.4. Principal Axes -- 5.3. Rate of Change of Angular Momentum -- 6. Newton - Euler Equations of Motion -- 6.1. Fundamental Equations -- 6.1.1. Basic Considerations -- 6.1.2. Procedural Steps -- 6.2. Planar Motion -- 6.3. Newton - Euler Equations for a System -- 6.4. Momentum and Energy Principles -- 6.4.1. Impulse - Momentum Principles -- 6.4.2. Work - Energy Principles -- 6.4.3. Collisions of Rigid Bodies -- 7. Introduction to Analytical Mechanics -- 7.1. Background -- 7.1.1. Principle of Virtual Work -- 7.1.2. Principle of Dynamic Virtual Work -- 7.2. Generalized Coordinates and Kinematical Constraints -- 7.2.1. Selection of Generalized Coordinates -- 7.2.2. Constraint Equations -- 7.2.3. Configuration Space -- 7.3. Evaluation of Virtual Displacements -- 7.3.1. Analytical Method -- 7.3.2. Kinematical Method -- 7.4. Generalized Forces -- 7.4.1. Definition of Generalized Forces -- 7.4.2. Relation Between Constraint Forces and Conditions -- 7.4.3. Conservative Forces -- 7.5. Lagrange's Equations -- 7.6. Solution of Equations for Holonomic Systems -- 8. Constrained Generalized Coordinates -- 8.1. Lagrange's Equations - Constrained Case -- 8.2. Computational Methods -- 8.2.1. Algorithms -- 8.2.2. Numerical Error Checking -- 8.2.3. Initial Conditions -- 8.2.4. Analysis of Coulomb Friction -- 9. Alternative Formulations -- 9.1. Hamilton's Principle -- 9.1.1. Derivation -- 9.1.2. Calculus of Variations -- 9.1.3. Ritz Series Method -- 9.2. Generalized Momentum Principles -- 9.2.1. Hamilton's Equations -- 9.2.2. Conservation of the Hamiltonian -- 9.2.3. Ignorable Coordinates and Routh's Method -- 9.3. Formulations with Quasi-Coordinates -- 9.3.1. Quasi-Velocities and Quasi-Coordinates -- 9.3.2. Gibbs - Appell Equations -- 9.3.3. Kane's Equations -- 9.3.4. Relationship of the Formulations -- 10. Gyroscopic Effects -- 10.1. Free Motion -- 10.1.1. Axisymmetric Bodies -- 10.1.2. Arbitrary Bodies -- 10.1.3. Poinsot's Construction for Arbitrary Bodies -- 10.2. Spinning Top -- 10.3. Gyroscopes for Inertial Guidance -- 10.3.1. Free Gyroscope -- 10.3.2. Gyrocompass -- 10.3.3. Single-Axis Gyroscope.

"This text is a modern vector-oriented treatment of classical dynamics and its application to engineering problems. Based on Ginsberg's Advanced Engineering Dynamics 2nd edition, it develops a broad spectrum of kinematical concepts, which provide the framework for formulations of kinetics principles following the Newton-Euler and analytical approaches. This fresh treatment features many expanded and new derivations, with an emphasis on both breadth and depth and a focus on making the subject accessible to individuals from a broad range of backgrounds."--Publisher's website.

Machine converted from AACR2 source record.

There are no comments on this title.

to post a comment.

Powered by Koha