Image from Coce

Vibration of axially loaded structures / Lawrence N. Virgin.

By: Material type: TextTextPublisher: New York, NY : Cambridge University Press, 2007Description: xvi, 351 pages : illustrations (some colour) ; 27 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 0521880424
  • 9780521880428
Subject(s): DDC classification:
  • 624.171 22
LOC classification:
  • TA355 .V57 2007
Online resources:
Contents:
1. Context: The Point of Departure -- 2. Elements of Classical Mechanics -- 2.1. Introduction -- 2.2. Newton's Second Law -- 2.3. Energy and Work -- 2.4. Virtual Work and D'Alembert's Principle -- 2.5. Hamilton's Principle and Lagrange's Equations -- 2.5.1. Constraints -- 2.5.2. Conservation Laws -- 2.6. Nonconservative Forces and Energy Dissipation -- 2.6.1. Damping -- 2.6.2. Time-Dependent Forces -- 2.7. Strain Energy -- 3. Dynamics in the Vicinity of Equilibrium -- 3.1. The Linear Oscillator -- 3.2. Oscillator with a Slow Sweep of Frequency -- 3.3. Dynamics and Stability -- 3.3.1. Stability Concepts -- 3.4. Bifurcations -- 3.4.1. The Saddle-Node Bifurcation -- 3.4.2. Bifurcations from a Trivial Equilibrium -- 3.4.3. Initial Imperfections -- 3.4.4. Bifurcations of Maps -- 3.5. A Simple Demonstration Model -- 3.6. Experiments -- 4. Higher-Order Systems -- 4.1. Introduction -- 4.2. Multiple-Degree-of-Freedom Systems -- 4.2.1. The Algebraic Eigenvalue Problem -- 4.2.2. Normal Modes -- 4.2.3. Equilibrium, Linearization, and Stability -- 4.2.4. Routh - Hurwitz Criterion -- 4.2.5. Lyapunov Functions -- 4.2.6. Rayleigh's Quotient -- 4.3. Distributed Systems -- 4.3.1. The Differential Eigenvalue Problem -- 4.3.2. Solution Methods -- 4.3.3. Context Revisited -- 5. Discrete-Link Models -- 5.1. Introduction -- 5.2. An Inverted Pendulum -- 5.2.1. Static Behavior -- 5.2.2. Geometric Imperfections -- 5.2.3. Dynamic Behavior -- 5.2.4. A Note on Inertia -- 5.3. A Discrete-Strut Model -- 5.4. An Asymmetric Model -- 5.5. A Three-Bar Model -- 5.6. A Snap-Through Model -- 5.7. Augusti's Model -- 5.8. Multiple Loads -- 5.9. Load-Dependent Supports -- 5.10. Path Following and Continuation -- 6. Strings, Cables, and Membranes -- 6.1. Introduction -- 6.2. The Stretched String -- 6.2.1. The Wave Equation -- 6.2.2. Traveling-Wave Solution -- 6.2.3. Energy Considerations and Rayleigh's Principle -- 6.3. A Suspended Cable -- 6.3.1. The Hanging Chain -- 6.4. A Rectangular Membrane -- 7. Continuous Struts -- 7.1. Introduction -- 7.2. Basic Formulation -- 7.2.1. The Response -- 7.2.2. The Temporal Solution -- 7.2.3. The Spatial Solution -- 7.3. Rayleigh's Quotient -- 7.4. Rayleigh - Ritz Analysis -- 7.5. A Galerkin Approach -- 7.6. Higher Modes -- 7.7. Rotating Beams -- 7.8. A Strut with a Tangential Load -- 7.9. Self-Weight -- 7.9.1. A Hanging Beam -- 7.9.2. Experiments -- 7.10. Thermal Loading -- 7.11. Other Effects -- 8. Other Column-Type Structures -- 8.1. A Beam on an Elastic Foundation -- 8.2. Elastically Restrained Supports -- 8.3. Beams with Variable Cross Section -- 8.4. Modal Coupling -- 8.5. Flexural - Torsional Buckling and Vibration -- 8.6. Type of Loading -- 8.7. A Continuous Arch -- 9. Frames -- 9.1. A Beam with General Boundary Conditions -- 9.2. The Stiffness Method -- 9.3. A Self-Strained Frame Example -- 9.4. Modal Analysis -- 9.5. Large-Deflection Analysis -- 9.6. A Tubular Structure -- 10. Plates -- 10.1. Introduction -- 10.1.1. Brief Review of the Classical Theory -- 10.1.2. Strain Energy -- 10.1.3. Boundary and Initial Conditions -- 10.1.4. The Simplest Case -- 10.1.5. Initial Imperfections -- 10.2. The Ritz and Finite-Element Approaches -- 10.3. A Fully Clamped Plate -- 10.4. Moderately Large Deflections -- 10.5. Postbuckling -- 10.6. Mode Jumping -- 10.6.1. Introduction -- 10.6.2. The Analytic Approach -- 10.6.3. Finite-Element Transient Results -- 10.7. Cylindrical Shells -- 11. Nondestructive Testing -- 11.1. Introduction -- 11.1.1. The Southwell Plot -- 11.1.2. Examples -- 11.2. Some Background -- 11.3. Snap-Through Revisited -- 11.4. Range of Prediction -- 11.5. A Box Column -- 11.6. Plates and Shells -- 12. Highly Deformed Structures -- 12.1. Introduction to the Elastica -- 12.2. The Governing Equations -- 12.3. Case Study A: Self-Weight Loading Revisited -- 12.3.1. Numerical Results -- 12.3.2. Experiments -- 12.4. Case Study B: A Heavy Beam -- 12.4.1. Numerical Results -- 12.4.2. Experiments -- 12.5. Case Study C: A Pinched Loop -- 12.6. Case Study D: A Beam Loaded by a Cable -- 12.7. The Softening Loop Revisited -- 13. Suddenly Applied Loads -- 13.1. Load Classification -- 13.2. Back to Link Models -- 13.3. Dynamic Buckling of a Plate -- 13.4. A Type of Escaping Motion -- 13.5. Impulsive Loading -- 13.5.1. Equilibrium Behavior -- 13.5.2. Behavior under Sudden Loading -- 13.6. Snap-Through of a Curved Panel -- 14. Harmonic Loading: Parametric Excitation -- 14.1. An Oscillating End Load -- 14.2. The Variational Equation -- 14.3. Mathieu's Equation -- 14.4. Pulsating Axial Loads on Shells -- 14.4.1. A Curved Panel -- 14.4.2. A Cylindrical Shell -- 15. Harmonic Loading: Transverse Excitation -- 15.1. Introduction: Resonance Effects -- 15.1.1. A Single-Mode Approximation -- 15.1.2. Beyond Buckling -- 15.2. The Poincare Section -- 15.3. Continuous Systems -- 15.4. An Application to Vibration Isolation -- 15.4.1. Postbuckling of a Strut Revisited -- 15.4.2. Experimental Verification -- 15.4.3. The Forced Response -- 15.5. Forced Excitation of the Thermally Buckled Plate -- 16. Nonlinear Vibration -- Part I. Free Vibration -- 16.1. Introduction -- 16.2. Abstract Models -- 16.3. A Mass Between Stretched Springs -- 16.4. Nonlinear Vibration of Strings -- 16.5. Nonlinear Vibration of Beams -- 16.6. Nonlinear Vibration of a Plate -- 16.7. Nonlinear Vibration in Cylindrical Shells -- Part II. Forced Vibration -- 16.8. Nonlinear Forced Vibration of Strings -- 16.9. Nonlinear Forced Vibration of Beams -- 16.10. Persistent Snap-Through Behavior in a Plate -- 16.11. A Panel in Supersonic Flow -- 16.12. Chaotic Behavior.
Summary: "This book concerns the vibration and the stability of slender structural components. The loss of stability of structures is an important aspect of structural mechanics and is presented here in terms of dynamic behavior. A variety of structural components are analyzed with a view to predict their response to various (primarily axial) loading conditions. A number of different techniques are presented, with experimental verification from the laboratory. Practical applications are widespread, ranging from cables to space structures. The book presents methods by which the combined effects of vibration and buckling on various structures can be assessed. Vibrations and buckling are usually treated separately, but in this book their influence on each other is examined together, with examples when a combined approach is necessary. The avoidance of instability is the primary goal of this material."--Publisher's website.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Book City Campus City Campus Main Collection 624.171 VIR (Browse shelf(Opens below)) 1 Available A401803B

Includes bibliographical references and index.

1. Context: The Point of Departure -- 2. Elements of Classical Mechanics -- 2.1. Introduction -- 2.2. Newton's Second Law -- 2.3. Energy and Work -- 2.4. Virtual Work and D'Alembert's Principle -- 2.5. Hamilton's Principle and Lagrange's Equations -- 2.5.1. Constraints -- 2.5.2. Conservation Laws -- 2.6. Nonconservative Forces and Energy Dissipation -- 2.6.1. Damping -- 2.6.2. Time-Dependent Forces -- 2.7. Strain Energy -- 3. Dynamics in the Vicinity of Equilibrium -- 3.1. The Linear Oscillator -- 3.2. Oscillator with a Slow Sweep of Frequency -- 3.3. Dynamics and Stability -- 3.3.1. Stability Concepts -- 3.4. Bifurcations -- 3.4.1. The Saddle-Node Bifurcation -- 3.4.2. Bifurcations from a Trivial Equilibrium -- 3.4.3. Initial Imperfections -- 3.4.4. Bifurcations of Maps -- 3.5. A Simple Demonstration Model -- 3.6. Experiments -- 4. Higher-Order Systems -- 4.1. Introduction -- 4.2. Multiple-Degree-of-Freedom Systems -- 4.2.1. The Algebraic Eigenvalue Problem -- 4.2.2. Normal Modes -- 4.2.3. Equilibrium, Linearization, and Stability -- 4.2.4. Routh - Hurwitz Criterion -- 4.2.5. Lyapunov Functions -- 4.2.6. Rayleigh's Quotient -- 4.3. Distributed Systems -- 4.3.1. The Differential Eigenvalue Problem -- 4.3.2. Solution Methods -- 4.3.3. Context Revisited -- 5. Discrete-Link Models -- 5.1. Introduction -- 5.2. An Inverted Pendulum -- 5.2.1. Static Behavior -- 5.2.2. Geometric Imperfections -- 5.2.3. Dynamic Behavior -- 5.2.4. A Note on Inertia -- 5.3. A Discrete-Strut Model -- 5.4. An Asymmetric Model -- 5.5. A Three-Bar Model -- 5.6. A Snap-Through Model -- 5.7. Augusti's Model -- 5.8. Multiple Loads -- 5.9. Load-Dependent Supports -- 5.10. Path Following and Continuation -- 6. Strings, Cables, and Membranes -- 6.1. Introduction -- 6.2. The Stretched String -- 6.2.1. The Wave Equation -- 6.2.2. Traveling-Wave Solution -- 6.2.3. Energy Considerations and Rayleigh's Principle -- 6.3. A Suspended Cable -- 6.3.1. The Hanging Chain -- 6.4. A Rectangular Membrane -- 7. Continuous Struts -- 7.1. Introduction -- 7.2. Basic Formulation -- 7.2.1. The Response -- 7.2.2. The Temporal Solution -- 7.2.3. The Spatial Solution -- 7.3. Rayleigh's Quotient -- 7.4. Rayleigh - Ritz Analysis -- 7.5. A Galerkin Approach -- 7.6. Higher Modes -- 7.7. Rotating Beams -- 7.8. A Strut with a Tangential Load -- 7.9. Self-Weight -- 7.9.1. A Hanging Beam -- 7.9.2. Experiments -- 7.10. Thermal Loading -- 7.11. Other Effects -- 8. Other Column-Type Structures -- 8.1. A Beam on an Elastic Foundation -- 8.2. Elastically Restrained Supports -- 8.3. Beams with Variable Cross Section -- 8.4. Modal Coupling -- 8.5. Flexural - Torsional Buckling and Vibration -- 8.6. Type of Loading -- 8.7. A Continuous Arch -- 9. Frames -- 9.1. A Beam with General Boundary Conditions -- 9.2. The Stiffness Method -- 9.3. A Self-Strained Frame Example -- 9.4. Modal Analysis -- 9.5. Large-Deflection Analysis -- 9.6. A Tubular Structure -- 10. Plates -- 10.1. Introduction -- 10.1.1. Brief Review of the Classical Theory -- 10.1.2. Strain Energy -- 10.1.3. Boundary and Initial Conditions -- 10.1.4. The Simplest Case -- 10.1.5. Initial Imperfections -- 10.2. The Ritz and Finite-Element Approaches -- 10.3. A Fully Clamped Plate -- 10.4. Moderately Large Deflections -- 10.5. Postbuckling -- 10.6. Mode Jumping -- 10.6.1. Introduction -- 10.6.2. The Analytic Approach -- 10.6.3. Finite-Element Transient Results -- 10.7. Cylindrical Shells -- 11. Nondestructive Testing -- 11.1. Introduction -- 11.1.1. The Southwell Plot -- 11.1.2. Examples -- 11.2. Some Background -- 11.3. Snap-Through Revisited -- 11.4. Range of Prediction -- 11.5. A Box Column -- 11.6. Plates and Shells -- 12. Highly Deformed Structures -- 12.1. Introduction to the Elastica -- 12.2. The Governing Equations -- 12.3. Case Study A: Self-Weight Loading Revisited -- 12.3.1. Numerical Results -- 12.3.2. Experiments -- 12.4. Case Study B: A Heavy Beam -- 12.4.1. Numerical Results -- 12.4.2. Experiments -- 12.5. Case Study C: A Pinched Loop -- 12.6. Case Study D: A Beam Loaded by a Cable -- 12.7. The Softening Loop Revisited -- 13. Suddenly Applied Loads -- 13.1. Load Classification -- 13.2. Back to Link Models -- 13.3. Dynamic Buckling of a Plate -- 13.4. A Type of Escaping Motion -- 13.5. Impulsive Loading -- 13.5.1. Equilibrium Behavior -- 13.5.2. Behavior under Sudden Loading -- 13.6. Snap-Through of a Curved Panel -- 14. Harmonic Loading: Parametric Excitation -- 14.1. An Oscillating End Load -- 14.2. The Variational Equation -- 14.3. Mathieu's Equation -- 14.4. Pulsating Axial Loads on Shells -- 14.4.1. A Curved Panel -- 14.4.2. A Cylindrical Shell -- 15. Harmonic Loading: Transverse Excitation -- 15.1. Introduction: Resonance Effects -- 15.1.1. A Single-Mode Approximation -- 15.1.2. Beyond Buckling -- 15.2. The Poincare Section -- 15.3. Continuous Systems -- 15.4. An Application to Vibration Isolation -- 15.4.1. Postbuckling of a Strut Revisited -- 15.4.2. Experimental Verification -- 15.4.3. The Forced Response -- 15.5. Forced Excitation of the Thermally Buckled Plate -- 16. Nonlinear Vibration -- Part I. Free Vibration -- 16.1. Introduction -- 16.2. Abstract Models -- 16.3. A Mass Between Stretched Springs -- 16.4. Nonlinear Vibration of Strings -- 16.5. Nonlinear Vibration of Beams -- 16.6. Nonlinear Vibration of a Plate -- 16.7. Nonlinear Vibration in Cylindrical Shells -- Part II. Forced Vibration -- 16.8. Nonlinear Forced Vibration of Strings -- 16.9. Nonlinear Forced Vibration of Beams -- 16.10. Persistent Snap-Through Behavior in a Plate -- 16.11. A Panel in Supersonic Flow -- 16.12. Chaotic Behavior.

"This book concerns the vibration and the stability of slender structural components. The loss of stability of structures is an important aspect of structural mechanics and is presented here in terms of dynamic behavior. A variety of structural components are analyzed with a view to predict their response to various (primarily axial) loading conditions. A number of different techniques are presented, with experimental verification from the laboratory. Practical applications are widespread, ranging from cables to space structures. The book presents methods by which the combined effects of vibration and buckling on various structures can be assessed. Vibrations and buckling are usually treated separately, but in this book their influence on each other is examined together, with examples when a combined approach is necessary. The avoidance of instability is the primary goal of this material."--Publisher's website.

Machine converted from AACR2 source record.

There are no comments on this title.

to post a comment.

Powered by Koha