Image from Coce

Philosophy of mathematics : an anthology / edited by Dale Jacquette.

Contributor(s): Material type: TextTextSeries: Blackwell philosophy anthologies ; 15.Publisher: Malden, Mass. : Blackwell Publishers, 2002Description: xii, 428 pages : illustrations ; 26 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 0631218696
  • 9780631218692
  • 063121870X
  • 9780631218708
Subject(s): DDC classification:
  • 510.1 21
LOC classification:
  • QA8.6 .P45 2002
Partial contents:
Introduction: Mathematics and Philosophy of Mathematics / Dale Jacquette -- Pt. I. The Realm of Mathematics. 1. What is Mathematics About? / Michael Dummett. 2. Mathematical Explanation / Mark Steiner. 3. Frege versus Cantor and Dedekind: On the Concept of Number / William W. Tait. 4. The Present Situation in the Philosophy of Mathematics / Henry Mehlberg -- Pt. II. Ontology of Mathematics and the Nature and Knowledge of Mathematical Truth. 5. What Numbers Are / N. P. White. 6. Mathematical Truth / Paul Benacerraf. 7. Ontology and Mathematical Truth / Michael Jubien. 8. An Anti-realist Account of Mathematical Truth / Graham Priest. 9. What Mathematical Knowledge Could Be / Jerrold J. Katz. 10. The Philosophical Basis of Our Knowledge of Number / William Demopoulos -- Pt. III. Models and Methods of Mathematical Proof. 11. Mathematical Proof / G. H. Hardy. 12. What Does a Mathematical Proof Prove? / Imre Lakatos. 13. The Four-Color Problem / Kenneth Appel and Wolfgang Haken. 14. Knowledge of Proofs / Peter Pagin. 15. The Phenomenology of Mathematical Proof / Gian-Carlo Rota. 16. Mechanical Procedures and Mathematical Experience / Wilfried Sieg -- Pt. IV. Intuitionism. 17. Intuitionism and Formalism / L. E. J. Brouwer. 18. Mathematical Intuition / Charles Parsons. 19. Brouwerian Intuitionism / Michael Detlefsen. 20. A Problem of Intuitionism: The Apparent Possibility of Performing Infinitely Many Takes in a Finite Time / A. W. Moore. 21. A Pragmatic Analysis of Mathematical Realism and Intuitionism / Michel J. Blais -- Pt. V. Philosophical Foundations of Set Theory. 22. Sets and Numbers / Penelope Maddy. 23. Sets, Aggregates, and Numbers / Palle Yourgrau. 24. The Approaches to Set Theory / John Lake. 25. Where Do Sets Come From? / Harold T. Hodes. 26. Conceptual Schemes in Set Theory / Robert McNaughton. 27. What is Required of a Foundation for Mathematics? / John Mayberry.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references and index.

Introduction: Mathematics and Philosophy of Mathematics / Dale Jacquette -- Pt. I. The Realm of Mathematics. 1. What is Mathematics About? / Michael Dummett. 2. Mathematical Explanation / Mark Steiner. 3. Frege versus Cantor and Dedekind: On the Concept of Number / William W. Tait. 4. The Present Situation in the Philosophy of Mathematics / Henry Mehlberg -- Pt. II. Ontology of Mathematics and the Nature and Knowledge of Mathematical Truth. 5. What Numbers Are / N. P. White. 6. Mathematical Truth / Paul Benacerraf. 7. Ontology and Mathematical Truth / Michael Jubien. 8. An Anti-realist Account of Mathematical Truth / Graham Priest. 9. What Mathematical Knowledge Could Be / Jerrold J. Katz. 10. The Philosophical Basis of Our Knowledge of Number / William Demopoulos -- Pt. III. Models and Methods of Mathematical Proof. 11. Mathematical Proof / G. H. Hardy. 12. What Does a Mathematical Proof Prove? / Imre Lakatos. 13. The Four-Color Problem / Kenneth Appel and Wolfgang Haken. 14. Knowledge of Proofs / Peter Pagin. 15. The Phenomenology of Mathematical Proof / Gian-Carlo Rota. 16. Mechanical Procedures and Mathematical Experience / Wilfried Sieg -- Pt. IV. Intuitionism. 17. Intuitionism and Formalism / L. E. J. Brouwer. 18. Mathematical Intuition / Charles Parsons. 19. Brouwerian Intuitionism / Michael Detlefsen. 20. A Problem of Intuitionism: The Apparent Possibility of Performing Infinitely Many Takes in a Finite Time / A. W. Moore. 21. A Pragmatic Analysis of Mathematical Realism and Intuitionism / Michel J. Blais -- Pt. V. Philosophical Foundations of Set Theory. 22. Sets and Numbers / Penelope Maddy. 23. Sets, Aggregates, and Numbers / Palle Yourgrau. 24. The Approaches to Set Theory / John Lake. 25. Where Do Sets Come From? / Harold T. Hodes. 26. Conceptual Schemes in Set Theory / Robert McNaughton. 27. What is Required of a Foundation for Mathematics? / John Mayberry.

Machine converted from AACR2 source record.

There are no comments on this title.

to post a comment.

Powered by Koha