Image from Coce

Mathematical control theory of coupled PDEs / Irena Lasiecka.

By: Material type: TextTextSeries: CBMS-NSF regional conference series in applied mathematics ; 75.Publisher: Philadelphia : Society for Industrial and Applied Mathematics, [2002]Copyright date: ©2002Description: xii, 242 pages ; 25 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 0898714869
  • 9780898714869
Subject(s): DDC classification:
  • 629.8312 21
LOC classification:
  • QA402.3 .L333 2002
Contents:
Preface -- 1. Introduction -- 1.1. Control Theory of Dynamical PDEs -- 1.1.1. Finite- versus infinite-dimensional control theory -- 1.1.2. Boundary/point control problems for single PDEs -- 1.1.3. Boundary/point control problems for systems of coupled PDEs -- 1.2. Goal of the Lectures -- 2. Well-Posedness of Second-Order Nonlinear Equations with Boundary Damping -- 2.1. Orientation -- 2.2. Abstract Model -- 2.3. Existence and Uniqueness: Statement of Main Results -- 2.4. Nonlinear Plates: von Karman Equations -- 2.4.1. Case [gamma] > 0 -- 2.4.2. Case [gamma] = 0 -- 2.5. Semilinear Wave Equation -- 2.6. Nonlinear Structural Acoustic Model -- 2.7. Full von Karman Systems -- 2.7.1. Model -- 2.7.2. Formulation of the results: Case [gamma] = 0 -- 2.7.3. Formulation of the results: Case [gamma] > 0 -- 2.8. Comments and Open Problems -- 3. Uniform Stabilizability of Nonlinear Waves and Plates -- 3.1. Orientation -- 3.2. Abstract Stabilization Inequalities -- 3.3. Semilinear Wave Equation with Nonlinear Boundary Damping -- 3.3.1. Formulation of the results -- 3.3.2. Regularization -- 3.3.3. Preliminary PDE inequalities -- 3.3.4. Absorption of the lower-order terms -- 3.3.5. Completion of the proof of the main theorem -- 3.4. Nonlinear Plate Equations -- 3.4.1. Modified von Karman equations -- 3.4.2. Full von Karman system and dynamic system of elasticity -- 3.4.3. Nonlinear plates with thermoelasticity -- 3.5. Comments and Open Problems -- 4. Uniform Stability of Structural Acoustic Models -- 4.1. Orientation -- 4.2. Internal Damping on the Wall -- 4.3. Boundary Damping on the Wall -- 4.3.1. Model -- 4.3.2. Formulation of the results -- 4.3.3. Preliminary multipliers estimates -- 4.3.4. Microanalysis estimate for the traces of solutions of Euler-Bernoulli equations and wave equations -- 4.3.5. Observability estimates for the structural acoustic problem -- 4.3.6. Completion of the proof of Theorem 4.3.1 -- 4.4. Thermal Damping -- 4.4.1. Model -- 4.4.2. Statement of main results -- 4.4.3. Sharp trace regularity results -- 4.4.4. Uniform stabilization: Proof of Theorem 4.4.2 -- 4.4.5. Wave equation -- 4.4.6. Uniform stability analysis for the coupled system -- 4.5. Comments and Open Problems -- 5. Structural Acoustic Control Problems: Semigroup and PDE Models -- 5.1. Orientation -- 5.2. Abstract Setting: Semigroup Formulation -- 5.3. PDE Models Illustrating the Abstract Wall Equation (5.2.2) -- 5.3.1. Plates and beams: Flat[Gamma subscript 0] -- 5.3.2. "Undamped" boundary conditions: g [identical with] 0 in (5.3.10) -- 5.3.3. Boundary feedback: Case g [not equal] 0 in (5.3.10) and related stability -- 5.3.4. Shells: Curved-wall [Gamma subscript 0] -- 5.4. Stability in Linear Structural Acoustic Models -- 5.4.1. Internal damping on the wall -- 5.4.2. Boundary damping on the wall -- 5.5. Comments and Open Problems -- 6. Feedback Noise Control in Structural Acoustic Models: Finite Horizon Problems -- 6.1. Orientation -- 6.2. Optimal Control Problem -- 6.3. Formulation of the Results -- 6.3.1. Hyperbolic-parabolic coupling -- 6.3.2. Hyperbolic-hyperbolic coupling: General case -- 6.3.3. Hyperbolic-hyperbolic coupling: Special case of the Kirchhoff plate with point control -- 6.4. Abstract Optimal Control Problem: General Theory -- 6.4.1. Formulation of the abstract control problem -- 6.4.2. Characterization of the optimal control -- 6.4.3. Additional properties under the hyperbolic regularity assumption -- 6.4.4. DRE, feedback generator, and regularity of the gains B*P, B*r -- 6.5. Riccati Equations Subject to the Singular Estimate for e[superscript At]B -- 6.5.1. Formulation of the results -- 6.5.2. Proof of Lemma 6.5.1 -- 6.5.3. Proof of Theorem 6.5.1 -- 6.6. Back to Structural Acoustic Problems: Proofs of Theorems 6.3.1 and 6.3.2 -- 6.6.1. Verification of Assumption (6.4.1) -- 6.6.2. Verification of Assumption 6.5.1 -- 6.7. Comments and Open Problems -- 7. Feedback Noise Control in Structural Acoustic Models: Infinite Horizon Problems -- 7.1. Orientation -- 7.2. Optimal Control Problem -- 7.3. Formulation of the Results -- 7.3.1. Hyperbolic-parabolic coupling -- 7.3.2. Hyperbolic-hyperbolic coupling: Abstract results -- 7.3.3. Hyperbolic-hyperbolic coupling: Kirchhoff plate with point control -- 7.4. Abstract Optimal Control Problem: General Theory -- 7.4.1. Formulation of the abstract control problem -- 7.4.2. ARE subject to condition (7.4.15) -- 7.5. ARE Subject to a Singular Estimate for e[superscript At]B -- 7.5.1. Formulation of the results -- 7.5.2. Proof of Theorem 7.5.1 -- 7.6. Back to Structural Acoustic Problems: Proofs of Theorems 7.3.1 and 7.3.2 -- 7.7. Comments and Open Problems -- Bibliography -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Book City Campus City Campus Main Collection 629.8312 LAS (Browse shelf(Opens below)) 1 Available A418265B

Includes bibliographical references (pages 225-238) and index.

Preface -- 1. Introduction -- 1.1. Control Theory of Dynamical PDEs -- 1.1.1. Finite- versus infinite-dimensional control theory -- 1.1.2. Boundary/point control problems for single PDEs -- 1.1.3. Boundary/point control problems for systems of coupled PDEs -- 1.2. Goal of the Lectures -- 2. Well-Posedness of Second-Order Nonlinear Equations with Boundary Damping -- 2.1. Orientation -- 2.2. Abstract Model -- 2.3. Existence and Uniqueness: Statement of Main Results -- 2.4. Nonlinear Plates: von Karman Equations -- 2.4.1. Case [gamma] > 0 -- 2.4.2. Case [gamma] = 0 -- 2.5. Semilinear Wave Equation -- 2.6. Nonlinear Structural Acoustic Model -- 2.7. Full von Karman Systems -- 2.7.1. Model -- 2.7.2. Formulation of the results: Case [gamma] = 0 -- 2.7.3. Formulation of the results: Case [gamma] > 0 -- 2.8. Comments and Open Problems -- 3. Uniform Stabilizability of Nonlinear Waves and Plates -- 3.1. Orientation -- 3.2. Abstract Stabilization Inequalities -- 3.3. Semilinear Wave Equation with Nonlinear Boundary Damping -- 3.3.1. Formulation of the results -- 3.3.2. Regularization -- 3.3.3. Preliminary PDE inequalities -- 3.3.4. Absorption of the lower-order terms -- 3.3.5. Completion of the proof of the main theorem -- 3.4. Nonlinear Plate Equations -- 3.4.1. Modified von Karman equations -- 3.4.2. Full von Karman system and dynamic system of elasticity -- 3.4.3. Nonlinear plates with thermoelasticity -- 3.5. Comments and Open Problems -- 4. Uniform Stability of Structural Acoustic Models -- 4.1. Orientation -- 4.2. Internal Damping on the Wall -- 4.3. Boundary Damping on the Wall -- 4.3.1. Model -- 4.3.2. Formulation of the results -- 4.3.3. Preliminary multipliers estimates -- 4.3.4. Microanalysis estimate for the traces of solutions of Euler-Bernoulli equations and wave equations -- 4.3.5. Observability estimates for the structural acoustic problem -- 4.3.6. Completion of the proof of Theorem 4.3.1 -- 4.4. Thermal Damping -- 4.4.1. Model -- 4.4.2. Statement of main results -- 4.4.3. Sharp trace regularity results -- 4.4.4. Uniform stabilization: Proof of Theorem 4.4.2 -- 4.4.5. Wave equation -- 4.4.6. Uniform stability analysis for the coupled system -- 4.5. Comments and Open Problems -- 5. Structural Acoustic Control Problems: Semigroup and PDE Models -- 5.1. Orientation -- 5.2. Abstract Setting: Semigroup Formulation -- 5.3. PDE Models Illustrating the Abstract Wall Equation (5.2.2) -- 5.3.1. Plates and beams: Flat[Gamma subscript 0] -- 5.3.2. "Undamped" boundary conditions: g [identical with] 0 in (5.3.10) -- 5.3.3. Boundary feedback: Case g [not equal] 0 in (5.3.10) and related stability -- 5.3.4. Shells: Curved-wall [Gamma subscript 0] -- 5.4. Stability in Linear Structural Acoustic Models -- 5.4.1. Internal damping on the wall -- 5.4.2. Boundary damping on the wall -- 5.5. Comments and Open Problems -- 6. Feedback Noise Control in Structural Acoustic Models: Finite Horizon Problems -- 6.1. Orientation -- 6.2. Optimal Control Problem -- 6.3. Formulation of the Results -- 6.3.1. Hyperbolic-parabolic coupling -- 6.3.2. Hyperbolic-hyperbolic coupling: General case -- 6.3.3. Hyperbolic-hyperbolic coupling: Special case of the Kirchhoff plate with point control -- 6.4. Abstract Optimal Control Problem: General Theory -- 6.4.1. Formulation of the abstract control problem -- 6.4.2. Characterization of the optimal control -- 6.4.3. Additional properties under the hyperbolic regularity assumption -- 6.4.4. DRE, feedback generator, and regularity of the gains B*P, B*r -- 6.5. Riccati Equations Subject to the Singular Estimate for e[superscript At]B -- 6.5.1. Formulation of the results -- 6.5.2. Proof of Lemma 6.5.1 -- 6.5.3. Proof of Theorem 6.5.1 -- 6.6. Back to Structural Acoustic Problems: Proofs of Theorems 6.3.1 and 6.3.2 -- 6.6.1. Verification of Assumption (6.4.1) -- 6.6.2. Verification of Assumption 6.5.1 -- 6.7. Comments and Open Problems -- 7. Feedback Noise Control in Structural Acoustic Models: Infinite Horizon Problems -- 7.1. Orientation -- 7.2. Optimal Control Problem -- 7.3. Formulation of the Results -- 7.3.1. Hyperbolic-parabolic coupling -- 7.3.2. Hyperbolic-hyperbolic coupling: Abstract results -- 7.3.3. Hyperbolic-hyperbolic coupling: Kirchhoff plate with point control -- 7.4. Abstract Optimal Control Problem: General Theory -- 7.4.1. Formulation of the abstract control problem -- 7.4.2. ARE subject to condition (7.4.15) -- 7.5. ARE Subject to a Singular Estimate for e[superscript At]B -- 7.5.1. Formulation of the results -- 7.5.2. Proof of Theorem 7.5.1 -- 7.6. Back to Structural Acoustic Problems: Proofs of Theorems 7.3.1 and 7.3.2 -- 7.7. Comments and Open Problems -- Bibliography -- Index.

Machine converted from AACR2 source record.

There are no comments on this title.

to post a comment.

Powered by Koha